The bromonucleosides (BrdX's) 5-bromo-2'-deoxyuridine (BrdU), 5-bromo-2'-deoxycytidine (BrdC), 8-bromo-2'-deoxyadenosine (BrdA), and 5-bromo-2'-deoxyguanosine (BrdG) may substitute for ordinary nucleosides in DNA. As indicated by electron-stimulated desorption experiments, such a modified biopolymer is greater than 2-3-fold more sensitive to damage induced by excess electrons. The other major product of water radiolysis, the (•)OH radical, may form a number of other radicals in chemical reactions with the complex content of the cell. Thus, the well-proved BrdU-labeled DNA radiosensitivity may be, at least in part, related to secondary organic radicals. Therefore, in the current study, the propensity of BrdX's to damage induced by 2-hydroxypropyl radical (OHisop(•))-a prototype radical species-was investigated. The HPLC and LC-MS analyses revealed the formation of two major products from the brominated pyrimidine nucleosides, a native nucleoside and an adduct of BrdX and OHisop(•) , and only an adduct of BrdX from the bromopurine nucleosides. Quantum chemical calculations ascribed this evident difference between purines and pyrimidines to the electron transfer from OHisop(•) to BrdX that is especially favorable in pyrimidines.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.5b01904DOI Listing

Publication Analysis

Top Keywords

induced 2-hydroxypropyl
8
damage induced
8
adduct brdx
8
reactivity pattern
4
pattern bromonucleosides
4
bromonucleosides induced
4
2-hydroxypropyl radicals
4
radicals photochemical
4
photochemical radiation
4
radiation chemical
4

Similar Publications

Niemann Pick Disease Type C (NP-C), a rare neurogenetic disease with no known cure, is caused by mutations in the cholesterol trafficking protein NPC1. Brain microvascular endothelial cells (BMEC) are thought to play a critical role in the pathogenesis of several neurodegenerative diseases; however, little is known about how these cells are altered in NP-C. In this study, we investigated how NPC1 inhibition perturbs BMEC metabolism in human induced pluripotent stem cell-derived BMEC (hiBMEC).

View Article and Find Full Text PDF

Metabolic characteristics of prostate cancer cells with high metastatic potential revealed by (S)-ethyl 1-(3-(4-chlorophenoxy)-2-hydroxypropyl)-3-(4-methoxyphenyl)-1H-pyrazole-5-carboxylate inhibition.

J Pharm Biomed Anal

December 2024

School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, PR China.

A small molecule, (S)-ethyl 1-(3-(4-chlorophenoxy)-2-hydroxypropyl)-3-(4-methoxyphenyl)-1H-pyrazole-5-carboxylate (SEC), has been reported to be capable of suppressing metastasis of prostate cancer (PCa) cells. In this study, SEC was used to study the metabolic responses of PCa cell lines (LNCaP, PC3, and DU145) with different metastatic potential and the alterations of mTOR, p-mTOR, AMPK, and p-AMPK levels, when the PCa cells were inhibited. The ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS)-based analysis showed that SEC induced the decreases of intracellular metabolites including glutamic acid, glutamine, and histidine (LNCaP); creatinine, citric acid/isocitric acid, and aspartic acid (PC3); and spermidine, S-hydroxymethylglutathione, LPE (20:3), and palmitic amide (DU145), and the increases of intracellular LPC (18:0) (LNCaP); tyrosine, pyroglutamic acid/pyrroline hydroxycarboxylic acid (PC3); and tyrosine, phenylalanine, phenylacetylglycine, spermine, histidine, and choline (DU145).

View Article and Find Full Text PDF

Combination of multivalent DR5 receptor clustering agonists and histone deacetylase inhibitors for treatment of colon cancer.

J Control Release

December 2024

Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA. Electronic address:

Death Receptor 5 (DR5) targeted therapies offer significant promise due to their pivotal role in mediating the extrinsic pathway of apoptosis. Despite DR5 overexpression in various malignancies and the potential of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), clinical applications of anti-DR5 monoclonal antibodies (mAbs) have been hampered by suboptimal outcomes potentially due to lack of receptor clustering. To address the limitation, we developed N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-based conjugates integrating multiple copies of DR5-targeting peptide (cyclic WDCLDNRIGRRQCVKL; cDR5) to enhance receptor clustering and apoptosis.

View Article and Find Full Text PDF

Formulation and Development of Nanofiber-Based Ophthalmic Insert for the Treatment of Bacterial Conjunctivitis.

Int J Mol Sci

August 2024

Center of Pharmacology and Drug Research & Development, University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Street 7-9, H-1092 Budapest, Hungary.

A novel ophthalmic delivery system utilizing levofloxacin-loaded, preservative-free, nanofiber-based inserts was investigated. Polyvinyl alcohol (PVA) and Poloxamer 407 (Polox)were employed as matrix materials, while hydroxypropyl-beta-cyclodextrin (HP-β-CD) was a solubilizer. The formulations were prepared via electrospinning and characterized for fiber morphology, drug dissolution, cytotoxicity, and antimicrobial activity.

View Article and Find Full Text PDF

Acidified sucralfate encapsulated chitosan derivative nanoparticles as oral vaccine adjuvant delivery enhancing mucosal and systemic immunity.

Int J Biol Macromol

November 2024

Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, China; Zhejiang-Malaysia Joint Laboratory for Bioactive Materials and Applied Microbiology, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, China; Wenzhou Medical University, Wenzhou, Zhejiang 325035, China. Electronic address:

Oral vaccines are generally perceived to be safe, easy to administer, and have the potential to induce both systemic and mucosal immune responses. However, given the challenges posed by the harsh gastrointestinal environment and mucus barriers, the development of oral vaccines necessitates the employment of a safe and efficient delivery system. In recent years, nanoparticle-based delivery has proven to be an ideal delivery vector for the manufacture of oral vaccines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!