Formaldehyde (FA) is a chemical widely used in the furniture industry and has been classified as a potential human carcinogen. The purpose of this study was to evaluate the occupational exposure of workers to FA at a furniture manufacturing facility and the relationship between environmental concentrations of FA, formic acid concentration in urine, and DNA damage. The sample consisted of 46 workers exposed to FA and a control group of 45 individuals with no history of occupational exposure. Environmental concentrations of FA were determined by high-performance liquid chromatography. Urinary formic acid concentrations were determined by gas chromatography with flame ionization detector. DNA damage was evaluated by the micronucleus (MN) test performed in exfoliated buccal cells and comet assay with venous blood. The 8-h time-weighted average of FA environmental concentration ranged from 0.03 ppm to 0.09 ppm at the plant, and the control group was exposed to a mean concentration of 0.012 ppm. Workers exposed to higher environmental FA concentrations had urinary formic acid concentrations significantly different from those of controls (31.85 mg L(-1) vs. 19.35 mg L(-), p ≤ 0.01 Mann-Whitney test). Significant differences were found between control and exposed groups for the following parameters: damage frequency and damage index in the comet assay, frequency of binucleated cells in the MN test, and formic acid concentration in urine. The frequency of micronuclei, nuclear buds, and karyorrhexis did not differ between groups. There was a positive correlation between environmental concentrations of FA and damage frequency (Spearman's rank correlation coefficient [r s] = 0.24), damage index (r s = 0.21), binucleated cells (r s = 0.34), and urinary formic acid concentration (r s = 0.63). The results indicate that, although workers in the furniture manufacturing facility were exposed to low environmental levels of FA, this agent contributes to the observed increase in cytogenetic damage. In addition, urinary formic acid concentrations correlated strongly with occupational exposure to FA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0748233715584250 | DOI Listing |
J Chromatogr B Analyt Technol Biomed Life Sci
January 2025
School of Pharmacy, Lanzhou University, Lanzhou 730030 China; Department of Pharmacy, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030 China. Electronic address:
Objective: To develop a rapid, convenient, accurate, and low-residual-effect ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the determination of polymyxin B sulfate and colistin sulfate in the blood of patients with multidrug-resistant bacterial infections, as well as caspofungin acetate in the blood of patients with fungal infections, thus facilitating the rational use of antibiotics in clinical applications.
Methods: All analytes were diluted with 0.2 % aqueous formic acid, and plasma proteins were precipitated using acetonitrile.
Am J Transl Res
December 2024
Department of Pharmacy, The Fourth Hospital of Hebei Medical University Shijiazhuang 050000, Hebei, China.
Objectives: The aim of this study was to establish an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the detection of osimertinib in rat plasma, lung and brain tissues.
Methods: Forty-eight rats were randomly divided into an experimental group (receiving osimertinib at doses of 5, 8, and 10 mg/kg) and a control group. After continuous intragastric administration for 15 days, samples of blood, lung, and brain tissue were collected.
J Chromatogr Sci
January 2025
Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain.
An efficient reverse-phase high-performance liquid chromatographic method, based on the design of the experiment approach, was developed for the simultaneous determination of capsiate isomers. Critical method parameters, i.e.
View Article and Find Full Text PDFJ Chromatogr Sci
January 2025
Pesticide Residue Analysis Laboratory, Department of Entomology, Punjab Agricultural University, Ludhiana 141004, Punjab, India.
Validation of Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method was performed for estimation of imidacloprid (IM) and its metabolites in maize leaves, immature kernels, mature kernels, stalk, and soil using liquid chromatograph tandem mass spectrometry, coupled with electrospray ionization. The extraction in different matrices of maize and soil was performed using acetonitrile +0.1% formic acid followed by clean-up with primary secondary amine sorbent and anhydrous magnesium sulfate.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department for Chemistry, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark.
A new Ru(II) complex featuring a novel amino-di(N-heterocyclic carbene) CNC pincer ligand, CNC-RuCl(CO) (Ru-1), has been developed and characterised in depth. Ru-1 forms an efficient and durable catalytic formic acid dehydrogenation system in combination with the ionic liquid 1-ethyl-3-methylimidazolium diethylphosphate (EMIM PO(OEt)).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!