High levels of microRNA-155 (miR-155) are associated with poor outcome in acute myeloid leukemia (AML). In AML, miR-155 is regulated by NF-κB, the activity of which is, in part, controlled by the NEDD8-dependent ubiquitin ligases. We demonstrate that MLN4924, an inhibitor of NEDD8-activating enzyme presently being evaluated in clinical trials, decreases binding of NF-κB to the miR-155 promoter and downregulates miR-155 in AML cells. This results in the upregulation of the miR-155 targets SHIP1, an inhibitor of the PI3K/Akt pathway, and PU.1, a transcription factor important for myeloid differentiation, leading to monocytic differentiation and apoptosis. Consistent with these results, overexpression of miR-155 diminishes MLN4924-induced antileukemic effects. In vivo, MLN4924 reduces miR-155 expression and prolongs the survival of mice engrafted with leukemic cells. Our study demonstrates the potential of miR-155 as a novel therapeutic target in AML via pharmacologic interference with NF-κB-dependent regulatory mechanisms. We show the targeting of this oncogenic microRNA with MLN4924, a compound presently being evaluated in clinical trials in AML. As high miR-155 levels have been consistently associated with aggressive clinical phenotypes, our work opens new avenues for microRNA-targeting therapeutic approaches to leukemia and cancer patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4868182 | PMC |
http://dx.doi.org/10.1038/leu.2015.106 | DOI Listing |
eNeuro
January 2025
Department of Neurology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362002, China.
Acute ischemic stroke (AIS) is a dangerous neurological disease associated with an imbalance in Th17/Treg cells and abnormal activation of the Wnt/β-catenin signaling pathway. This study aims to investigate whether inhibition of miR-155 can activate the Wnt/β-catenin signaling pathway to improve Th17/Treg imbalance and provide neuroprotective effects against stroke. We employed a multi-level experimental design.
View Article and Find Full Text PDFIndian J Pathol Microbiol
October 2024
Department of Pathology, Sichuan Taikang Hospital, Chengdu, China.
Objective: To explore more and better liquid biopsy markers of exosomal microRNAs (exo-miRNAs) in renal interstitial fibrosis (RIF) and to preliminary investigate the biological functions and signaling pathways involved in these markers.
Materials And Methods: High-throughput miRNA sequencing was performed on blood and urine exo-miRNAs from three RIF patients and three healthy volunteers, and differential expression analysis and bioinformatic processing were performed.
Results: There were 13 differentially expressed exo-miRNA (DEexo-miRNA) between RIF and healthy blood, and 20 DEexo-miRNAs in urine.
Allergol Immunopathol (Madr)
January 2025
Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran;
Common variable immunodeficiency (CVID) is the most common symptomatic and heterogeneous type of inborn errors of immunity (IEI). However, the pathogenesis process of this disease is often unknown. Epigenetic modifications may be involved in unresolved patients.
View Article and Find Full Text PDFKaohsiung J Med Sci
January 2025
Department of Urology, Tianjin First Central Hospital, Tianjin, China.
miR-155 exhibits variable expression in different tumors and fulfills diverse biological roles. However, specific molecular mechanisms by which miR-155-5p, which is under-expressed in prostate cancer (PCa), operates are yet to be elucidated. The role of the enhancer of zeste 2 (EZH2)/miR-155-5p axis in PCa was determined by using bioinformatics tools and performing luciferase reporter assay, chromatin immunoprecipitation PCR, CCK-8 assays, cell migration and invasion assays, RNA isolation, reverse transcription quantity (RT-qPCR) and Western blot.
View Article and Find Full Text PDFNutrients
December 2024
Department of Internal Medicine VII, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540136 Targu Mures, Romania.
Noncoding RNAs, particularly microRNAs (miRNAs) and small interfering RNAs (siRNAs), have emerged as key players in the pathogenesis and therapeutic strategies for inflammatory bowel disease (IBD). MiRNAs, small endogenous RNA molecules that silence target mRNAs to regulate gene expression, are closely linked to immune responses and inflammatory pathways in IBD. Notably, miR-21, miR-146a, and miR-155 are consistently upregulated in IBD, influencing immune cell modulation, cytokine production, and the intestinal epithelial barrier.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!