The study of etching characteristics and mechanisms for HfO2 and Si in CF4/O2/Ar and CHF3/O2/Ar inductively-coupled plasmas was carried out. The etching rates of HfO2 thin films as well as the HfO2/Si etching selectivities were measured as functions of Ar content in a feed gas (0-50% Ar) at fixed fluorocarbon gas content (50%), gas pressure (6 mTorr), input power (700 W), bias power (200 W), and total gas flow rate (40 sccm). Plasma parameters as well as the differences in plasma chemistries for CF4- and CHF3-based plasmas were analyzed using Langmuir probe diagnostics and 0-dimensional plasma modeling. It was found that, in both gas systems, the non-monotonic (with a maximum at about 15-20% Ar) HfO2 etching rate does not correlate with monotonic changes of F atom flux and ion energy flux. It was proposed that, under the given set of experimental conditions, the HfO2 etching process is affected by the factors determining the formation and decomposition kinetics of the fluorocarbon polymer layer. These factor are the fluxes of CF(x) (x = 1, 2) radicals, O atoms and H atoms.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2014.10171DOI Listing

Publication Analysis

Top Keywords

etching characteristics
8
characteristics mechanisms
8
mechanisms hfo2
8
hfo2 thin
8
thin films
8
cf4/o2/ar chf3/o2/ar
8
hfo2 etching
8
etching
6
hfo2
5
gas
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!