Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nitrogen-doped mesoporous TiO2 (NMP TiO2) nanoparticles are synthesized using a soft triblock copolymer template by TiCl4 hydrolysis with ammonia water and applied to the photoelectrodes of dye-sensitized solar cells (DSSCs). The large surface area of a TiO2 mesoporous structure is favorable for dye uptake, and nitrogen doping of TiO2 is expected to increase the charge transport in the photoelectrode as well as the scattering of visible light. Structural characterizations for NMP TiO2 nanoparticles by XRD, XPS, BET, and BJH analyses revealed successful synthesis. However, the photovoltaic performances of the DSSCs prepared from NMP TiO2 were not improved, as had been expected: the photo-conversion efficiency (η) of DSSCs from undoped mesoporous TiO2 (MP TiO2) was 4.69%, an improvement over the 4.15% with the application of P25 TiO2, but the efficiency of DSSCs from NMP TiO2 decreased to 3.2-3.6%. The measured amounts of adsorbed dye showed that nitrogen doping did not significantly affect dye adsorption. Therefore, it can be concluded that nitrogen doping increases isotropic charge transport in a TiO2 nanoparticle to promote charge recombination into an electrolyte, despite its advantages. The full benefits of nitrogen doping may be obtained through measures such as the deposition of a thin barrier layer of oxide onto the TiO2 surface to prevent charge recombination during charge transport in the TiO2 network.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2014.10112 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!