Since direct printing technology has developed intensively, low-cost fabrication and reliability have become critical challenges for mass production of printed electronic devices. The silver/copper (Ag/Cu) nanopaste was manufactured by Ag nanopaste mixed with different proportions of Cu nanoparticles ranging from 0 to 5 vol.% in order to investigate the influences of Cu content on the electrical properties and electrochemical migration (ECM) characteristics. The patterns were constructed on a glass wafer via screen printing with the Ag/Cu nanopaste. They were then annealed through debinding for 30 min in air followed by sintering for 30 min in a hydrogen atmosphere at various temperatures (150, 200, 250, and 300 degrees C). The electrical resistivity of printed patterns that were sintered at 150 degrees C grew with increases in the percentage of Cu content in the Ag/Cu nanopaste, while printed patterns that were sintered at 300 degrees C show similar electrical resistivity values of around 2-3 μΩ cm regardless of Cu content. The ECM characteristics of the printed patterns were evaluated by performing a water drop test. The printed patterns that were sintered at higher temperatures showed longer ECM times. At 300 degrees C, the ECM time was considerably lengthened when the Cu content was over 2 vol.%, and the 5 vol.% Cu pattern showed the longest ECM time of 305 s, which was around 1.65 times that of the Ag pattern.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2014.10057DOI Listing

Publication Analysis

Top Keywords

ag/cu nanopaste
16
printed patterns
16
300 degrees
12
patterns sintered
12
electrochemical migration
8
ecm characteristics
8
degrees electrical
8
electrical resistivity
8
ecm time
8
patterns
6

Similar Publications

Since direct printing technology has developed intensively, low-cost fabrication and reliability have become critical challenges for mass production of printed electronic devices. The silver/copper (Ag/Cu) nanopaste was manufactured by Ag nanopaste mixed with different proportions of Cu nanoparticles ranging from 0 to 5 vol.% in order to investigate the influences of Cu content on the electrical properties and electrochemical migration (ECM) characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!