To obtain a structural basis for the beta-casein in Chinese human milk, structural transitions of the beta-casein in response to variation of pH were investigated using Raman and circular dichroism (CD) spectroscopy. Both methods indicated that the secondary structures of beta-casein in the solution were induced by the pH. Secondary structural analysis of beta-casein by CD spectroscopy yielded 0.5%-2% alpha-helical, 16%-18% beta-sheet, 30%-34% beta-turn and 49%-51% random coil contents. Another result was that as pH increases, these structures change. Several distinct transitions were observed by circular dichroism in alpha-helix at pH 8 and pH 10. Raman spectrum also showed random coil as the major secondary structure in native beta-casein, for the characteristic band of the beta-casein amide I was at 1662 cm(-1): Calculations from I850/I830 suggested that the tyrosine residues of beta-casein tended to "exposure". CD and Raman spectra both showed that at neutral and alkaline pH the beta-casein existed predominantly in random coil conformation, and the proportion of alpha-helix was higher at pH 8 than under other pH conditions. Over the range of pH studied, the sheet and turn areas remained relatively constant, and in the condition of pH 8, the content of alpha-helical was higher than in the other pH conditions.
Download full-text PDF |
Source |
---|
Angew Chem Int Ed Engl
January 2025
Nanchang University, College of Chemistry, No.999 Xuefu Road, Honggutan New District, 330031, Nanchang, CHINA.
Chiral ferroelectrics have recently received considerable interest due to their unique chiroptical properties. They can adopt Kleinman symmetry second-harmonic generation (SHG)-active chiral-polar point groups in the ferroelectric phase while Kleinman symmetry SHG-inactive chiral-nonpolar point groups in the paraelectric phase, providing a great opportunity to realize on/off switching of SHG circular dichroism (SHG-CD) response. However, the SHG-CD effect was rarely explored in chiral ferroelectrics, and the on/off switchable SHG-CD has never been reported.
View Article and Find Full Text PDFCurr Res Food Sci
January 2025
School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Guangxi Key Laboratory of Green Processing of Sugar Resources, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Liuzhou, 545006, China.
The combination of polyphenols and protein can improve the functional characteristics of protein. How to effectively promote the binding of polyphenols to protein is still a difficult topic. In this study, hydrodynamic cavitation (HC) was used to induce the fabrication of complexes between soy protein isolate (SPI) and different polyphenols (tannic acid (TA), chlorogenic acid (CGA), ferulic acid (FA), caffeic acid (CA), and gallic acid (GA)).
View Article and Find Full Text PDFFive new indole diterpenoids, shearinines U-Y (2-6), and the known compound 22,23-dehydro-shearinine A (1) were isolated from cultures of the entomogenous fungus sp. Their structures were elucidated primarily by NMR experiments. The absolute configurations of 2-6 were assigned by electronic circular dichroism calculations, respectively.
View Article and Find Full Text PDFACS Cent Sci
January 2025
Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
The design of metalloproteins allows us to better understand metal complexation in proteins and the resulting function. In this study, we incorporated a Cu-binding site into a natural protein domain, the 58 amino acid c-Crk-SH3, to create a miniaturized superoxide dismutase model, termed SO1. The resulting low complexity metalloprotein was characterized for structure and function by circular dichroism and UV spectroscopy as well as EPR spectroscopy and X-ray crystallography.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Regulatory Bioorganic Chemistry, SANKEN (the Institute of Science and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
Non-canonical DNA structures formed by aberrantly expanded repeat DNA are implicated in promoting repeat instability and the onset of repeat expansion diseases. Small molecules that target these disease-causing repeat DNAs hold promise as therapeutic agents for such diseases. Specifically, 1,3-di(quinolin-2-yl)guanidine (DQG) has been identified to bind to the disease-causing GGCCCC (G2C4) repeat DNA associated with amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!