Promoting Reductive Tandem Reactions of Nitrostyrenes with Mo(CO)6 and a Palladium Catalyst To Produce 3H-Indoles.

J Am Chem Soc

Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061, United States.

Published: June 2015

The combination of Mo(CO)6 and 10 mol % of palladium acetate catalyzes the transformation of 2-nitroarenes to 3H-indoles through a tandem cyclization-[1,2] shift reaction of in situ generated nitrosoarenes. Mo(CO)6 appears to have dual roles in this transformation: generate CO and promote C-N bond formation to increase the yield of the N-heterocycle product.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.5b02946DOI Listing

Publication Analysis

Top Keywords

promoting reductive
4
reductive tandem
4
tandem reactions
4
reactions nitrostyrenes
4
nitrostyrenes moco6
4
moco6 palladium
4
palladium catalyst
4
catalyst produce
4
produce 3h-indoles
4
3h-indoles combination
4

Similar Publications

Effects of tryptophan-selective lipidated GLP-1 peptides on the GLP-1 receptor.

J Endocrinol

January 2025

N Inagaki, Department of Diabetes, Endocrinology and Nutrition, Kyoto University, Kyoto, Japan.

Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1 RAs) are widely used as antidiabetic and anti-obesity agents. Although conventional GLP-1 RAs such as liraglutide and semaglutide are acylated with fatty acids to delay their degradation by dipeptidylpeptidase-4 (DPP-4), the manufacturing process is challenging. We previously developed selectively lipidated GLP-1 peptides at their only tryptophan residue (peptide A having one 8-amino-3,6-dioxaoctanoic acid (miniPEG) linker and peptide B having three miniPEG linkers).

View Article and Find Full Text PDF

Defect-Induced Electron Localization Promotes D2O Dissociation and Nitrile Adsorption for Deuterated Amines.

Angew Chem Int Ed Engl

January 2025

Tianjin University, Department of Chemistry, #92, Weijin Road, Nankai District, Department of Chemistry, School of Science, Tianjin University, 300072, Tianjin, CHINA.

Electrochemical reductive deuteration of nitriles is a promising strategy for synthesizing deuterated amines with D2O as the deuterated source. However, this reaction suffers from high overpotentials owing to the sluggish D2O dissociation kinetics and high thermodynamic stability of the C≡N triple bond. Here, low-coordinated copper (LC-Cu) is designed to decrease the overpotential for the electrosynthesis of the precursor of Melatonin-d4, 5-methoxytryptamine-d4, by 100 mV with a 68% yield (Faraday efficiency), which is 4 times greater than that of high-coordinated copper (HC-Cu).

View Article and Find Full Text PDF

Introduction: A variety of hypoglycaemic drugs are used to treat polycystic ovarian syndrome (PCOS), but their efficacy remains insufficient. Glucokinase activators (GKAs) are a unique class of hypoglycaemic medications with emerging potential, notably in significantly reducing insulin resistance (IR). Nevertheless, the efficacy of GKAs in treating PCOS, particularly in the absence or presence of IR, remains uncertain.

View Article and Find Full Text PDF

Background: Most patients with prostate cancer inevitably progress to castration-resistant prostate cancer (CRPC), at which stage chemotherapeutics like docetaxel become the first-line treatment. However, chemotherapy resistance typically develops after an initial period of therapeutic efficacy. Increasing evidence indicates that cancer stem cells confer chemotherapy resistance via exosomes.

View Article and Find Full Text PDF

Molecular Photoelectrocatalysis for Radical Reactions.

Acc Chem Res

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China.

ConspectusMolecular photoelectrocatalysis, which combines the merits of photocatalysis and organic electrosynthesis, including their green attributes and capacity to offer novel reactivity and selectivity, represents an emerging field in organic chemistry that addresses the growing demands for environmental sustainability and synthetic efficiency. This synergistic approach permits access to a wider range of redox potentials, facilitates redox transformations under gentler electrode potentials, and decreases the use of external harsh redox reagents. Despite these potential advantages, this area did not receive significant attention until 2019, when we and others reported the first examples of modern molecular photoelectrocatalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!