The seasonality of influenza virus infections in temperate climates and the role of environmental conditions like temperature and humidity in the transmission of influenza virus through the air are not well understood. Using ferrets housed at four different environmental conditions, we evaluated the respiratory droplet transmission of two influenza viruses (a seasonal H3N2 virus and an H3N2 variant virus, the etiologic virus of a swine to human summertime infection) and concurrently characterized the aerosol shedding profiles of infected animals. Comparisons were made among the different temperature and humidity conditions and between the two viruses to determine if the H3N2 variant virus exhibited enhanced capabilities that may have contributed to the infections occurring in the summer. We report here that although increased levels of H3N2 variant virus were found in ferret nasal wash and exhaled aerosol samples compared to the seasonal H3N2 virus, enhanced respiratory droplet transmission was not observed under any of the environmental settings. However, overall environmental conditions were shown to modulate the frequency of influenza virus transmission through the air. Transmission occurred most frequently at 23°C/30%RH, while the levels of infectious virus in aerosols exhaled by infected ferrets agree with these results. Improving our understanding of how environmental conditions affect influenza virus infectivity and transmission may reveal ways to better protect the public against influenza virus infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4430532PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0125874PLOS

Publication Analysis

Top Keywords

environmental conditions
20
influenza virus
20
respiratory droplet
12
droplet transmission
12
virus
12
h3n2 variant
12
variant virus
12
conditions affect
8
influenza viruses
8
virus infections
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!