Candida rugosa lipase immobilization on hydrophilic charged gold nanoparticles as promising biocatalysts: Activity and stability investigations.

Colloids Surf B Biointerfaces

Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; Center for Protection of Environment and Cultural Heritages (CIABC), Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.

Published: July 2015

In this work, a simple and versatile methodology to obtain two different bioconjugated systems has been developed by the immobilization of Candida rugosa lipase (CRL) on hydrophilic gold nanoparticles functionalized with 2-diethylaminoethanethiol hydrochloride (DEA) or with sodium 3-mercapto-1-propanesulfonate (3MPS), namely Au-DEA@CRL and Au-3MPS@CRL. Both spectroscopic and morphological properties of metal nanoparticles have been deeply investigated. The enzyme loading and lipolytic activity of AuNPs@CRL bioconjugates have been studied with respect to different surface functionalization and compared with the free enzyme. Some physical and chemical parameters had a strong effect on enzyme activity and stability, that were improved in the case of the Au-DEA@CRL bioconjugate, which showed a remarkable biocatalytic performance (95% of residual lipolytic activity compared with free CRL) and stability in experimental conditions concerning pH (range 5-8) and temperature (range 20-60°C), as often required for the industrial scale up of catalytic systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2015.04.046DOI Listing

Publication Analysis

Top Keywords

candida rugosa
8
rugosa lipase
8
gold nanoparticles
8
activity stability
8
lipolytic activity
8
compared free
8
lipase immobilization
4
immobilization hydrophilic
4
hydrophilic charged
4
charged gold
4

Similar Publications

One-step biomineralization to synthesize reusable CRL@ZnCo-MOF for boosting lipase stability and sustainable dibutyl phthalate removal.

Int J Biol Macromol

January 2025

Key Laboratory of Chem-Biosensing of Anhui Province, Key Laboratory of Functional Molecular Solids of Anhui Province, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, Anhui, China. Electronic address:

Adsorption and biodegradation are two important means to remove the pollutants from the environment, but how to combine them and improve the catalytic performance and stability of free enzyme are facing great challenges. Herein, lipase from Candida rugosa (CRL) was immobilized into bimetallic ZnCo-MOF by biomineralization, which not only significantly improved the catalytic activity and stability of CRL but also endowed it with excellent reusability. Furthermore, CRL@ZnCo-MOF established a synergetic system of combined adsorption and enzymatic degradation for the sustainable removal of dibutyl phthalate (DBP) in actual water environment.

View Article and Find Full Text PDF

The objective of this study was to produce new and renewable bio-based plasticizers from used soybean cooking oil (USCO). First, USCO was completely converted into free fatty acids (FFAs) using lipase from Candida rugosa. Next, these FFAs were enzymatically esterified with benzyl alcohol in solvent-free systems.

View Article and Find Full Text PDF

Removal of phthalate esters by integrated adsorption and biodegradation using improved performance of lipase@MOFs.

Environ Pollut

December 2024

Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China. Electronic address:

Phthalate esters (PAEs) are broadly utilized as plasticizers in industrial products, posing a significant threat to ecological security and human health. Lipase is a kind of green biocatalyst with the ability to degrade PAEs, but its application is limited due to its low stability and poor reusability. Herein, lipase from Candida rugosa (CRL) was immobilized into an organic ligand replacement MOFs (MAF-507) and cysteine modification and glutaraldehyde cross-linking were simultaneously performed to synthesize immobilized lipase (Cys-CRL@GA@MAF-507) using a one-pot method.

View Article and Find Full Text PDF

Immobilization of lipase on mesoporous silica nanocarriers for efficient preparation of phytosterol esters.

Int J Biol Macromol

January 2025

Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Shanxi Agricultural University, Taigu, Taiyuan, Shanxi 030801, PR China. Electronic address:

Article Synopsis
  • * The ideal conditions for enzyme immobilization were determined to be 160 mg/mL enzyme concentration, pH 7.0, 30°C temperature, and a 6-hour adsorption time, resulting in a protein loading of 42.3 mg/g and 73.4% efficiency.
  • * The study found that MS nanocarriers outperformed traditional carriers in converting phytosterols from soybean oil, achieving a 97.7% conversion rate,
View Article and Find Full Text PDF

Considering the selective pharmacological activity of chiral drugs, it is important to develop new chiral materials to synthesize them. In this work, two new chiral MOFs (UiO-66@Np and UiO-66@Ib) were prepared by the covalent attachment of the chiral compounds (S-naproxen and S-ibuprofen) to the amine-functionalized Zr-MOF (UiO-66-NH). Then, Candida rugosa lipase (CRL) was immobilized on these chiral MOFs to fabricate two new biocomposites (UiO-66@Np@CRL and UiO-66@Ib@CRL) as effective biocatalysts, which enable significant enhancement in the catalytic activity and enantioselectivity of lipase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!