Land surface emissivity is a crucial parameter in the surface status monitoring. This study aims at the evaluation of four directional emissivity models, including two bi-directional reflectance distribution function (BRDF) models and two gap-frequency-based models. Results showed that the kernel-driven BRDF model could well represent directional emissivity with an error less than 0.002, and was consequently used to retrieve emissivity with an accuracy of about 0.012 from an airborne multi-angular thermal infrared data set. Furthermore, we updated the cavity effect factor relating to multiple scattering inside canopy, which improved the performance of the gap-frequency-based models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.23.00A346 | DOI Listing |
Int J Biol Macromol
January 2025
College of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, PR China. Electronic address:
To this day, energy conservation, emission reduction, and environmental protection continue to be goals pursued by humanity. Passive radiation cooling, as a zero-consumption refrigeration technology, offers substantial opportunities for reducing global energy consumption and carbon dioxide emissions. It is of great significance to develop high-performance passive radiation cooling materials from sustainable materials.
View Article and Find Full Text PDFNanophotonics
April 2024
Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
Manipulating the thermal emission in the infrared (IR) range significantly impacts both fundamental scientific research and various technological applications, including IR thermal camouflage, information encryption, and radiative cooling. While prior research has put forth numerous materials and structures for these objectives, the significant challenge lies in attaining spatially resolved and dynamically multilevel control over their thermal emissions. In this study, a one-step ultrafast laser writing technique is experimentally demonstrated to achieve position-selective control over thermal emission based on the phase-change material GeSbTe (GST).
View Article and Find Full Text PDFNanophotonics
March 2024
Taizhou Hospital, Zhejiang University, Taizhou, China.
Nanophotonics
March 2024
ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain.
Blackbody radiation is incoherent and omnidirectional, whereas various novel applications in renewable energy require a degree of directional control of a thermally emitted beam. So far, such directional control has required nano-structuring the surface of a thermally emitting material, typically by forming diffraction gratings. This, however, necessitates lithography and usually results in polarization-dependent properties.
View Article and Find Full Text PDFNanophotonics
March 2024
GPL Photonics Laboratory, State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.
Directional control of thermal emission over its broad wavelength range is a fundamental challenge. Gradient epsilon-near-zero (ENZ) material supporting Berreman mode has been proposed as a promising approach. However, the bandwidth is still inherently limited due to the availability of ENZ materials covering a broad bandwidth and additional undesired omnidirectional modes in multilayer stacking with increased thickness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!