Polarization-resolved second harmonic generation (P-SHG) microscopy is an efficient imaging modality for in situ observation of biopolymers structure in tissues, providing information about their mean in-plane orientation and their molecular structure and 3D distribution. Nevertheless, P-SHG signal build-up in a strongly focused regime is not throroughly understood yet, preventing reliable and reproducible measurements. In this study, theoretical analysis, vectorial numerical simulations and experiments are performed to understand how geometrical parameters, such as excitation and collection numerical apertures and detection direction, affect P-SHG imaging in homogeneous collagen tissues. A good agreement is obtained in tendon and cornea, showing that detection geometry significantly affects the SHG anisotropy measurements, but not the measurements of collagen in-plane orientation.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.23.009313DOI Listing

Publication Analysis

Top Keywords

geometrical parameters
8
anisotropy measurements
8
in-plane orientation
8
theoretical numerical
4
numerical experimental
4
experimental study
4
study geometrical
4
parameters affect
4
affect anisotropy
4
measurements
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!