We report our work on the development of subwavelength gold pillar arrays as local surface plasmonic (LSP) resonators for sensor applications. These arrays are fabricated by electron beam lithography combined with electroplating. The conical shape, instead of flat one, on the top of Au pillars, induced by uneven current density in the plating, may affect the LSP resonance (LSPR). This paper aims to carry out a systematic study of LSPR behavior in nanopillar arrays with both flat and conical shapes on the top, trying to prove the feasibility of the developed nanoprocess. Both numerical simulations by the finite-difference time-domain (FDTD) method and experimental characterization on fabricated LSP resonators for reflectance spectra were carried out. Our experiments indicate that the fabricated nanopillar arrays in Au demonstrate the promising capability of refractive index sensing with sensitivity of 270 nm/refractive index unit. FDTD simulation of electric field density in the gap between pillars reveals the correlation between the resonant absorption of the incident light and the standing waves of localized surface plasmon polaritons in the gaps of the pillar array, despite the conical shape of the pillars. Moreover, it was discovered that the resonant absorption becomes stronger when the light incident angle is increased. The proposed nanoprocess for pillar arrays should possess great prospects for manufacturing Au pillars with high aspect ratio for achieving higher sensitivity at an economical cost.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.54.002537DOI Listing

Publication Analysis

Top Keywords

nanopillar arrays
12
fabricated electron
8
electron beam
8
beam lithography
8
lithography combined
8
combined electroplating
8
pillar arrays
8
lsp resonators
8
conical shape
8
resonant absorption
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!