In this paper, we consider the application of compressive sensing (CS) to radar remote sensing applications. We survey a suite of practical system-level issues related to the compression of radar measurements, and we advocate the consideration of these issues by researchers exploring potential gains of CS in radar applications. We also give abbreviated examples of decades-old radio-frequency (RF) practices that already embody elements of CS for relevant applications. In addition to the cautionary implications of system-level issues and historical precedents, we identify several promising results that RF practitioners may gain from the recent explosion of CS literature.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.54.0000C1DOI Listing

Publication Analysis

Top Keywords

compressive sensing
8
system-level issues
8
pitfalls possibilities
4
radar
4
possibilities radar
4
radar compressive
4
sensing paper
4
paper consider
4
consider application
4
application compressive
4

Similar Publications

Sparse loudspeaker array design for wideband frequency-invariant beamforming with multiple targets.

J Acoust Soc Am

January 2025

Key Laboratory of Modern Acoustics, Institute of Acoustics, Nanjing University, Nanjing 210093, China.

Beamforming technology using loudspeaker arrays is widely used in sound applications, but current sparse array design methods focus on optimizing a single beam for a single target direction, limiting their applicability to multi-channel sound systems. This paper presents a design method for sparse loudspeaker line arrays to generate wideband frequency-invariant beams in multiple target directions. A model based on tapped delay lines is developed and a two-stage design approach is proposed.

View Article and Find Full Text PDF

Glow Discharge Optical Emission Coded Aperture Spectroscopy.

Anal Chem

January 2025

Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-41061, United States.

Glow discharge optical emission spectrometry (GDOES) allows fast and simultaneous multielemental analysis directly from solids and depth profiling down to the nanometer scale, which is critical for thin-film (TF) characterization. Nevertheless, operating conditions for the best limits of detection (LODs) are compromised in lieu of the best sputtering crater shapes for depth resolution. In addition, the fast transient signals from ultra-TFs do not permit the optimal sampling statistics of bulk analysis such that LODs are further compromised.

View Article and Find Full Text PDF

Human cerebral organoids serve as a quintessential model for deciphering the complexities of brain development in a three-dimensional milieu. However, imaging these organoids, particularly when they exceed several millimeters in size, has been curtailed by the technical impediments such as phototoxicity, slow imaging speeds, and inadequate resolution and imaging depth. Addressing these pivotal challenges, our study has pioneered a high-speed scanning microscope, synergistically coupled with advanced computational image processing.

View Article and Find Full Text PDF

Background: Real-time (RT) phase contrast (PC) flow MRI can potentially be used to measure blood flow in arrhythmic patients. Undersampled RT PC has been combined with online compressed sensing (CS) reconstruction (CS RT) enabling clinical use. However, CS RT flow has not been validated in a clinical setting.

View Article and Find Full Text PDF

Mechanosensitivity is the ability of cells to sense and respond to mechanical stimuli. In order to do this, cells are endowed with different components that allow them to react to a broad range of stimuli, such as compression or shear forces, pressure, and vibrations. This sensing process, mechanosensing, is involved in fundamental physiological mechanisms, such as stem cell differentiation and migration, but it is also central to the development of pathogenic states.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!