Glypicans are heparan sulphate proteoglycans (HSPGs) attached to the cell membrane by a glycosylphosphatidylinositol (GPI) anchor, and interact with various extracellular growth factors and receptors. The Drosophila division abnormal delayed (dally) was the first glypican loss-of-function mutant described that displays disrupted cell divisions in the eye and morphological defects in the wing. In human, as in most vertebrates, six glypican-encoding genes have been identified (GPC1-6), and mutations in several glypican genes cause multiple malformations including congenital heart defects. To understand better the role of glypicans during heart development, we studied the zebrafish knypek mutant, which is deficient for Gpc4. Our results demonstrate that knypek/gpc4 mutant embryos display severe cardiac defects, most apparent by a strong reduction in cardiomyocyte numbers. Cell-tracing experiments, using photoconvertable fluorescent proteins and genetic labeling, demonstrate that Gpc4 'Knypek' is required for specification of cardiac progenitor cells and their differentiation into cardiomyocytes. Mechanistically, we show that Bmp signaling is enhanced in the anterior lateral plate mesoderm of knypek/gpc4 mutants and that genetic inhibition of Bmp signaling rescues the cardiomyocyte differentiation defect observed in knypek/gpc4 embryos. In addition, canonical Wnt signaling is upregulated in knypek/gpc4 embryos, and inhibiting canonical Wnt signaling in knypek/gpc4 embryos by overexpression of the Wnt inhibitor Dkk1 restores normal cardiomyocyte numbers. Therefore, we conclude that Gpc4 is required to attenuate both canonical Wnt and Bmp signaling in the anterior lateral plate mesoderm to allow cardiac progenitor cells to specify and differentiate into cardiomyocytes. This provides a possible explanation for how congenital heart defects arise in glypican-deficient patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.113894 | DOI Listing |
Arch Toxicol
December 2024
Faculty of Medicine, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, Leipzig, Germany.
The Hedgehog (Hh) signaling pathway is essential for maintaining homeostasis during embryogenesis and in adult tissues. In the liver, dysregulation of this pathway often leads to liver cancer development. Recent studies also suggest that disturbances in the Hh pathway can affect liver metabolism in healthy livers through interactions with other signaling pathways, such as the Wnt/β-catenin pathway.
View Article and Find Full Text PDFJ Bone Miner Res
December 2024
Paris Cité University, Reference center for skeletal dysplasia, INSERM UMR 1163, Imagine Institute, Necker Enfants Malades Hospital (AP-HP), Paris, France.
Chondrodysplasias with multiple dislocations are rare skeletal disorders characterized by hyperlaxity, joint dislocations, and growth retardation. Chondrodysplasias with multiple dislocations have been linked to pathogenic variants in genes encoding proteins involved in the proteoglycan biosynthesis. In this study, by exome sequencing analysis, we identified a homozygous nonsense variant (NM_001297654.
View Article and Find Full Text PDFOsteosarcoma (OS) is the most common primary malignant bone tumor in childhood. Patients who present with metastatic disease at diagnosis or relapse have a very poor prognosis, and this has not changed over the past four decades. The Wnt signaling pathway plays a role in regulating osteogenesis and is implicated in OS pathogenesis.
View Article and Find Full Text PDFWorld J Methodol
December 2024
Department of Biology, St. Francis College, Brooklyn, NY 11201, United States.
In this Editorial review, we would like to focus on a very recent discovery showing the global autosomal gene regulation by Y- and inactivated X-chromosomal transcription factors, zinc finger gene on the Y chromosome (ZFY) and zinc finger protein X-linked (ZFX). ZFX and ZFY are both zinc-finger proteins that encode general transcription factors abundant in hematopoietic and embryonic stem cells. Although both proteins are homologs, interestingly, the regulation of self-renewal by these transcriptional factors is almost exclusive to ZFX.
View Article and Find Full Text PDFCell Biol Toxicol
December 2024
Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 13850 E. Montview Blvd, Box C238/V20-3128, Aurora, CO, 80045, USA.
Toxicant exposure can lead to acute liver injury, characterized by hepatic reprogramming and wound healing. Hepatic stellate cells (HSC) play a key role in liver regeneration during wound healing by secreting fibrogenic factors and production of extracellular matrix (ECM). However, repetitive injury to the liver can lead to extensive scarring and liver fibrosis, indicating HSCs coordinate both regeneration and disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!