Some high-performance imaging systems generate a curved focal surface and so are incompatible with focal plane arrays fabricated by conventional silicon processing. One example is a monocentric lens, which forms a wide field-of-view high-resolution spherical image with a radius equal to the focal length. Optical fiber bundles have been used to couple between this focal surface and planar image sensors. However, such fiber-coupled imaging systems suffer from artifacts due to image sampling and incoherent light transfer by the fiber bundle as well as resampling by the focal plane, resulting in a fixed obscuration pattern. Here, we describe digital image processing techniques to improve image quality in a compact 126° field-of-view, 30 megapixel panoramic imager, where a 12 mm focal length F/1.35 lens made of concentric glass surfaces forms a spherical image surface, which is fiber-coupled to six discrete CMOS focal planes. We characterize the locally space-variant system impulse response at various stages: monocentric lens image formation onto the 2.5 μm pitch fiber bundle, image transfer by the fiber bundle, and sensing by a 1.75 μm pitch backside illuminated color focal plane. We demonstrate methods to mitigate moiré artifacts and local obscuration, correct for sphere to plane mapping distortion and vignetting, and stitch together the image data from discrete sensors into a single panorama. We compare processed images from the prototype to those taken with a 10× larger commercial camera with comparable field-of-view and light collection.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.54.001124DOI Listing

Publication Analysis

Top Keywords

fiber bundle
16
focal plane
12
image
11
image processing
8
bundle image
8
imaging systems
8
focal
8
focal surface
8
monocentric lens
8
spherical image
8

Similar Publications

Objectives: Hydroxyapatite (HAp)/collagen (Col) cylinders with laminated collagen layers were implanted into the tibial diaphysis of rats and examined histochemically to clarify how the orientation of HAp and Col bone-like nanocomposite fibers in HAp/Col blocks affects bone resorption and formation.

Methods: HAp/Col fibers were synthesized and compressed into cylindrical blocks to mimic bone nanostructures. These were implanted into the cortical bone cavities of 10-week-old male Wistar rats with fiber bundles parallel to the tibial surface.

View Article and Find Full Text PDF

A fundamental issue in neuroscience is a lack of understanding regarding the relationship between brain function and the white matter architecture that supports it. Individuals with chronic neuropathic pain (NP) exhibit functional abnormalities throughout brain networks collectively termed the "dynamic pain connectome" (DPC), including the default mode network (DMN), salience network, and ascending nociceptive and descending pain modulation systems. These functional abnormalities are often observed in a sex-dependent fashion.

View Article and Find Full Text PDF

The correlations of several fundamental properties of human brain connections are investigated in a consensus connectome, constructed from 1064 braingraphs, each on 1015 vertices, corresponding to 1015 anatomical brain areas. The properties examined include the edge length, the fiber count, or edge width, meaning the number of discovered axon bundles forming the edge and the occurrence number of the edge, meaning the number of individual braingraphs where the edge exists. By using our previously published robust braingraphs at https://braingraph.

View Article and Find Full Text PDF

Here, we report on the first part of a two-part experimental series to elucidate spatiotemporal cytoskeletal remodeling, which underpins the evolution of stem cell shape and fate, and the emergence of tissue structure and function. In Part I of these studies, we first develop protocols to stabilize microtubules exogenously using paclitaxel (PAX) in a standardized model murine embryonic stem cell line (C3H/10T1/2) to maximize comparability with previously published studies. We then probe native and microtubule-stabilized stem cells' capacity to adapt to volume changing stresses effected by seeding at increasing cell densities, which emulates local compression and tissue template formation during development.

View Article and Find Full Text PDF

Fibre Optic Method for Detecting Oil Fluorescence in Marine Sediments.

Sensors (Basel)

December 2024

Department of Operational Oceanography, Maritime Institute, Gdynia Maritime University, ul. Roberta de Plelo 20, 80-848 Gdańsk, Poland.

The aim of this study is to verify the possibility of detecting oil in the bottom sediment using a fibre optic system. The presence of oil is assessed on excitation-emission spectra obtained from spectral fluorescence signals of the sediment sample. A factory spectrofluorometer coupled with an experimental fibre optic measurement system was used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!