By performing the Z-scan measurements at 800 nm using a femtosecond pulsed laser, we are able to characterize the nonlinear refractive indices of Nd, Y codoped CaF(2) and SrF(2) crystals. Based on our measured results, we conclude that the doped fluoride crystal possesses a small nonlinear refractive index and the doping of Nd(3+) and Y(3+) ions in CaF(2) can change its third-order nonlinear index, but the contribution is minor. The doped fluoride crystal may have large potential to be developed as the next generation of gain material for a high-energy laser system.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.54.000953DOI Listing

Publication Analysis

Top Keywords

nonlinear refractive
12
caf2 srf2
8
srf2 crystals
8
doped fluoride
8
fluoride crystal
8
z-scan measurement
4
nonlinear
4
measurement nonlinear
4
refractive nd3+
4
nd3+ y3+-codoped
4

Similar Publications

In this study, biopolymer composites based on chitosan (CS) with enhanced optical properties were functionalized using Manganese metal complexes and black tea solution dyes. The results indicate that CS with Mn-complexes can produce polymer hybrids with high absorption, high refractive index and controlled optical band gaps, with a significant reduction from 6.24 eV to 1.

View Article and Find Full Text PDF

Carbon-based nanomaterials with excellent electrical and optical properties are highly sought after for a plethora of hybrid applications, ranging from advanced sustainable energy storage devices to opto-electronic components. In this contribution, we examine in detail the dependence of electrical conductivity and the ultrafast optical nonlinearity of graphene oxide (GO) films on their degrees of reduction, as well as the link between the two properties. The GO films were first synthesized through the vacuum filtration method and then reduced partially and controllably by way of femtosecond laser direct writing with varying power doses.

View Article and Find Full Text PDF

Green approach to synthesis polymer composites based on chitosan with desired linear and non-linear optical characteristics.

Sci Rep

January 2025

Turning Trash to Treasure Laboratory (TTTL), Research and Development Center, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaymaniyah, 46001, Iraq.

The current study used sustainable and green approaches to convey polymer composites with desired optical properties. The extracted green tea dye (GTD) enriched with ligands was used to synthesize zinc metal complexes. Green chitosan biopolymer incorporated with green synthesized metal complex using casting technique was used to deliver polymer composites with improved optical properties.

View Article and Find Full Text PDF

Refraction of the Two-Photon Multimode Field via a Three-Level Atom.

Entropy (Basel)

January 2025

Center for Nonlinear Sciences and Department of Physics, University of North Texas, Denton, TX 76203, USA.

Classically, the refractive index of a medium is due to a response on said medium from an electromagnetic field. It has been shown that a single two-level atom interacting with a single photon undergoes dispersion. The following extends that analyses to a three-level system interacting with two photons.

View Article and Find Full Text PDF

General Equation for Expressing the Physicochemical Properties of Aliphatic Alcohols.

ACS Omega

January 2025

Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.

In this work, two general equations were proposed to express the nonlinear and linear changes in physicochemical properties of aliphatic alcohols, involving boiling point, refractive index, critical temperature, critical volume, and so on. The two general equations all are expressed with the same six molecular descriptors. The results show that the linear and nonlinear change properties of aliphatic alcohols have good correlations with the same six molecular descriptors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!