2,3-Benzodiazepines are a well-known group of compounds for their potential antagonism against AMPA receptors. It has been previously reported that the inhibitory effect of 2,3-benzodiazepine derivatives with a 7,8-ethylenedioxy moiety can be enhanced by simply adding a chlorine atom at position 3 of the 4-aminophenyl ring. Here we report that adding a methyl group at position 3 on the 4-aminophenyl ring, termed as BDZ-11-7, can similarly enhance the inhibitory activity, as compared with the unsubstituted one or BDZ-11-2. Our kinetic studies have shown that BDZ-11-7 is a noncompetitive antagonist of GluA2Q homomeric receptors and prefers to inhibit the closed-channel state. However, adding another methyl group at position 5 on the 4-aminophenyl ring, termed as BDZ-11-6, fails to yield extra inhibition on GluA2Q receptors. Instead, BDZ-11-6 exhibits a diminished inhibition of GluA2Q. Site interaction test indicates the two compounds, BDZ-11-6 and BDZ-11-7, bind to the same site on GluA2Q, which is also the binding site for their prototype, BDZ-11-2. Based on the results from this and our earlier studies, we propose that the binding site that accommodates the 4-aminophenyl ring must contain two interactive points, with one preferring polar groups like chlorine and the other preferring nonpolar groups such as a methyl group. Either adding a chlorine or a methyl group may enhance the inhibitory activity of 2,3-benzodiazepine derivatives with a 7,8-ethylenedioxy moiety. Adding any two of the same group on positions 3 and 5 of the 4-aminophenyl ring, however, significantly reduces the interaction between these 2,3-benzodiazepines and their binding site, because one group is always repelled by one interactive point. We predict therefore that adding a chlorine atom at position 3 and a methyl group at position 5 of the 4-aminophenyl ring of 2,3-benzodiazepine derivatives with a 7,8-ethylenedioxy moiety may produce a new compound that is more potent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acschemneuro.5b00064 | DOI Listing |
Molecules
July 2024
University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal.
The intriguing ability of -phenyl-nitrilimine to co-exist as allenic and propargylic bond-shift isomers motivated us to investigate how substituents in the phenyl ring influence this behavior. Building on our previous work on the - and -OH substitution, here we extended this investigation to explore the effect of the NH substitution. For this purpose, -(4-aminophenyl)- and -(3-aminophenyl)-nitrilimines were photogenerated in an argon matrix at 15 K by narrowband UV-light irradiation (λ = 230 nm) of 5-(4-aminophenyl)- and 5-(3-aminophenyl)-tetrazole, respectively.
View Article and Find Full Text PDFAdv Sci (Weinh)
May 2024
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China.
Ionic memristors can emulate brain-like functions of biological synapses for neuromorphic technologies. Apart from the widely studied excitatory-excitatory and excitatory-inhibitory synapses, reports on memristors with the inhibitory-inhibitory synaptic behaviors remain a challenge. Here, the first biaxially inhibited artificial synapse is demonstrated, consisting of a solid electrolyte and conjugated microporous polymers bilayer as neurotransmitter, with the former serving as an ion reservoir and the latter acting as a confined transport.
View Article and Find Full Text PDFAnal Chem
February 2024
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
Covalent organic frameworks (COFs) are attractive adsorbents for sample pretreatment due to their unique structure and properties. However, the selectivity of COFs for the extraction of hazardous compounds is still limited due to the lack of specific interactions between COFs and targets. Herein, we report a pore size adjustment strategy for room-temperature synthesis of molecularly imprinted COF (MICOF) for selective extraction of zearalenone (ZEN) in complex food samples.
View Article and Find Full Text PDFCurr Pharm Biotechnol
July 2024
Department of Pharmaceutical Science, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa.
Background: Blocking the oncogenic Wnt//β-catenin pathway has of late been investigated as a viable therapeutic approach in the treatment of cancer. This involves the multi-targeting of certain members of the tankyrase-kinase family; Tankyrase 2 (TNKS2), Protein Kinase B (AKT), and Cyclin- Dependent Kinase 9 (CDK9), which propagate the oncogenic Wnt/β-catenin signalling pathway.
Methods: During a recent investigation, the pharmacological activity of 2-(4-aminophenyl)-7-chloro- 3H-quinazolin-4-one was repurposed to serve as a 'triple-target' inhibitor of TNKS2, AKT and CDK9.
ACS Macro Lett
May 2023
Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
Intracellular bacterial infections are extremely difficult to be treated because intracellular bacteria have developed resistant mechanisms to escape the immune attack and antibiotic therapy. It remains challenging to develop antibiotic-free materials and relative strategies for treating intracellular bacterial infections. Herein, a new host-defense peptide-mimicking polymer nanoparticle, inspired by cell-penetrating peptides, was developed to eradicate intracellular bacteria by its outstanding antibacterial and pro-inflammatory immunomodulatory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!