G-protein-coupled receptors (GPCRs) are key players in cell signaling, and their cell surface expression is tightly regulated. For many GPCRs such as β2-AR (β2-adrenergic receptor), receptor activation leads to downregulation of receptor surface expression, a phenomenon that has been extensively characterized. By contrast, some other GPCRs, such as GABA(B) receptor, remain relatively stable at the cell surface even after prolonged agonist treatment; however, the underlying mechanisms are unclear. Here, we identify the small GTPase Rap1 as a key regulator for promoting GABA(B) receptor surface expression. Agonist stimulation of GABA(B) receptor signals through Gαi/o to inhibit Rap1GAPII (also known as Rap1GAP1b, an isoform of Rap1GAP1), thereby activating Rap1 (which has two isoforms, Rap1a and Rap1b) in cultured cerebellar granule neurons (CGNs). The active form of Rap1 is then recruited to GABA(B) receptor through physical interactions in CGNs. This Rap1-dependent signaling cascade promotes GABA(B) receptor surface expression by stimulating receptor recycling. Our results uncover a new mechanism regulating GPCR surface expression and also provide a potential explanation for the slow, long-lasting inhibitory action of GABA neurotransmitter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.167056 | DOI Listing |
Prog Neurobiol
December 2024
Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany; C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Dusseldorf, Germany.
Neurotransmitter receptors are key molecules in signal transmission in the adult brain, and their precise spatial and temporal balance expressions also play a critical role in normal brain development. However, the specific balance expression of multiple receptors during hippocampal development is not well characterized. In this study, we used quantitative in vivo receptor autoradiography to measure the distributions and densities of 18 neurotransmitter receptor types in the mouse hippocampal complex at postnatal day 7, and compared them with the expressions of their corresponding encoding genes.
View Article and Find Full Text PDFJ Comput Neurosci
December 2024
Department of Applied Mathematics, and Centre for Theoretical Neuroscience, University of Waterloo, 200 University Avenue W, Waterloo, N2L 3G1, ON, Canada.
Childhood absence epilepsy (CAE) is a paediatric generalized epilepsy disorder with a confounding feature of resolving in adolescence in a majority of cases. In this study, we modelled how the small-scale (synapse-level) effect of progesterone metabolite allopregnanolone induces a large-scale (network-level) effect on a thalamocortical circuit associated with this disorder. In particular, our goal was to understand the role of sex steroid hormones in the spontaneous remission of CAE.
View Article and Find Full Text PDFLancet Neurol
January 2025
Neuroimmunology Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer/CaixaResearch Institute, Hospital Clínic de Barcelona, Barcelona, Spain; Pediatric Neuroimmunology Unit, Neurology Department, Sant Joan de Déu Children's Hospital, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; European Reference Networks-RITA. Electronic address:
Background: The usefulness of current diagnostic approaches in children with suspected autoimmune encephalitis is unknown. We aimed to assess the diagnosis of autoimmune encephalitis in clinical practice and to compare the performance of two international diagnostic algorithms (one intended for patients of any age [general], the other intended for paediatric patients), with particular emphasis on the evaluation of patients with probable antibody-negative autoimmune encephalitis because this diagnosis suggests that immunotherapy should be continued or escalated but is difficult to establish.
Methods: We did a prospective cohort study that included all patients (<18 years of age) with suspected autoimmune encephalitis recruited at 40 hospitals in Spain whose physicians provided clinical information every 6 months for 2 years or more.
Arq Neuropsiquiatr
December 2024
Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo SP, Brazil.
Since the description of autoimmune encephalitis (AE) associated with N-methyl-D-aspartate receptor antibodies (anti-NMDARE) in 2007, more than 12 other clinical syndromes and antibodies have been reported. In this article, we review recent advances in pathophysiology, genetics, diagnosis pitfalls, and clinical phenotypes of AE associated with cell surface antibodies and anti-GAD associated neurological syndromes. Genetic studies reported human leukocyte antigen (HLA) associations for anti-LGI1, anti-Caspr2, anti-IgLON5, and anti-GAD.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
January 2025
Service of Neurology, Hospital Clinic, Barcelona, Spain.
Anti-IgLON5 disease was identified 10 years ago, thanks to the discovery of IgLON5 antibodies and the joint effort of specialists in sleep medicine, neuroimmunology, and neuropathology. Without this collaboration, it would have been impossible to untangle fundamental aspects of this disease. After the seminal description in 2014, today there is growing evidence that most patients present a chronic progressive course with gait instability, abnormal movements, bulbar dysfunction, and a sleep disorder characterized by nonrapid eye movement and REM parasomnias, and obstructive sleep apnea with stridor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!