AI Article Synopsis

Article Abstract

A high-efficiency lidar receiver architecture that emphasizes boosting the receiver collection efficiency of resonance-fluorescence and Doppler lidars has opened up new avenues of study for the mesosphere and lower thermosphere-extended (MLT-X) at sites in Boulder, Colorado, USA, and Cerro Pachón, Chile. Described in this work are in-depth considerations in the design, construction, and alignment of Na Doppler lidar receivers that have yielded signal levels typically 5-10 times higher per power-aperture product than any demonstrated in the literature, to these authors' knowledge, making studies of fine-scale MLT turbulence and tenuous thermospheric layers in Na possible with temperature and vertical wind capability for the first time. A lowering of the detection threshold by higher receiver collection efficiency at Cerro Pachón has enabled this Na Doppler lidar to extend its measurement range far higher into the thermosphere, to regions with Na density less than 3  cm(-3). With renewed interest in the MLT-X region prompted by recent lidar discoveries of Fe in the thermosphere reaching 170 km at McMurdo, Antarctica, the receiver optimizations we have made now enable addressing an important need in the community. In addition, the higher spatial and temporal resolutions afforded by high signal-to-noise ratio, down to resolutions of ∼20  s and ∼20  m, promise to make the first direct measurements of eddy flux in the mesopause region possible. Results from deployment of optimized receivers at the Table Mountain Lidar Observatory in Boulder, the Andes Lidar Observatory at Cerro Pachón, and the Arecibo Observatory in Puerto Rico are presented to demonstrate the power and portability of our methods that are readily applicable to other lidar varieties, including, but not limited to, the newly developed Fe Doppler lidar and recently upgraded K Doppler lidar.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.54.003173DOI Listing

Publication Analysis

Top Keywords

doppler lidar
16
cerro pachón
12
lidar
9
receiver architecture
8
resonance-fluorescence doppler
8
doppler lidars
8
receiver collection
8
collection efficiency
8
lidar observatory
8
doppler
6

Similar Publications

We demonstrate a (FMCW) light detection and ranging (LIDAR) system utilizing a (SNSPD) to measure vibrational spectra using reflected signals at the single-photon level. By determining the time-variant Doppler shift of the reflected probe signal, this system successfully reconstructs various audio signals, including pure sinusoidal, multi-tonal, and musical signals, up to 200 Hz, limited by the laser frequency modulation rate and the Nyquist sampling theorem. Additionally, we employ scanning galvo mirrors to perform 3D measurements and map audio signals from different regions in the scanned field of view.

View Article and Find Full Text PDF

Aerosol transport and associated boundary layer thermodynamics under contrasting synoptic conditions over a semiarid site.

Sci Total Environ

January 2025

Department of Geosciences, Atmospheric Science Division, Texas Tech University, Lubbock, TX, USA; National Wind Institute, Texas Tech University, Lubbock, TX, USA. Electronic address:

Understanding the kinematics of aerosol horizontal transport and vertical mixing near the surface, within the atmospheric boundary layer (ABL), and in the overlying free troposphere (FT) is critical for various applications, including air quality and weather forecasting, aviation, road safety, and dispersion modeling. Empirical evidence of aerosol mixing processes within the ABL during synoptic-scale events over arid and semiarid regions (i.e.

View Article and Find Full Text PDF

Underwater simultaneous localization and mapping (SLAM) has significant challenges due to the complexities of underwater environments, marked by limited visibility, variable conditions, and restricted global positioning system (GPS) availability. This study provides a comprehensive analysis of sensor fusion techniques in underwater SLAM, highlighting the amalgamation of proprioceptive and exteroceptive sensors to improve UUV navigational accuracy and system resilience. Essential sensor applications, including inertial measurement units (IMUs), Doppler velocity logs (DVLs), cameras, sonar, and LiDAR (light detection and ranging), are examined for their contributions to navigation and perception.

View Article and Find Full Text PDF

Spaceborne resonance fluorescence Doppler lidar uses metal atoms as tracers to detect atmospheric temperature, wind speed, and metal atom number density from the top of the mesosphere to the bottom of the thermosphere in the global atmosphere. This study proposes a concept of spaceborne Fe resonance fluorescence Doppler lidar (spaceborne Fe lidar). To theoretically analyze the feasibility of this technology, key parameters of the lidar were designed.

View Article and Find Full Text PDF

The microphysical changes in cloud formation and development are closely related to the vertical air motions. It is difficult to simultaneously detect microphysical parameters of drizzle and vertical air motions. This study proposes a method for the drizzle microphysical property and vertical air motions retrieval using Doppler lidar and radar measurements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!