Nat Commun
Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Medical College, Fudan University, Shanghai 201508, China.
Published: May 2015
The avian origin A/H7N9 influenza virus causes high admission rates (>99%) and mortality (>30%), with ultimately favourable outcomes ranging from rapid recovery to prolonged hospitalization. Using a multicolour assay for monitoring adaptive and innate immunity, here we dissect the kinetic emergence of different effector mechanisms across the spectrum of H7N9 disease and recovery. We find that a diversity of response mechanisms contribute to resolution and survival. Patients discharged within 2-3 weeks have early prominent H7N9-specific CD8(+) T-cell responses, while individuals with prolonged hospital stays have late recruitment of CD8(+)/CD4(+) T cells and antibodies simultaneously (recovery by week 4), augmented even later by prominent NK cell responses (recovery >30 days). In contrast, those who succumbed have minimal influenza-specific immunity and little evidence of T-cell activation. Our study illustrates the importance of robust CD8(+) T-cell memory for protection against severe influenza disease caused by newly emerging influenza A viruses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4479016 | PMC |
http://dx.doi.org/10.1038/ncomms7833 | DOI Listing |
Emerg Microbes Infect
January 2025
Center for Influenza and Emerging Diseases, University of Missouri, Columbia, MO 652011, USA.
Influenza A viruses (IAVs) pose a major public health threat due to their wide host range and pandemic potential. Pigs have been proposed as "mixing vessels" for avian, swine, and human IAVs, significantly contributing to influenza ecology. In the United States, IAVs are enzootic in commercial swine farming operations, with numerous genetic and antigenic IAV variants having emerged in the past two decades.
View Article and Find Full Text PDFEmerg Microbes Infect
January 2025
Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang Agricultural University, Shenyang, People's Republic of China.
The H9N2 subtype of avian influenza virus (AIV) is widely distributed among poultry and wild birds and is also a threat to humans. During AIV active surveillance in Liaoning province from 2015 to 2016, we identified ten H9N2 strains exhibiting different lethality to chick embryos. Two representative strains, A/chicken/China/LN07/2016 (CKLN/07) and A/chicken/China/LN17/2016 (CKLN/17), with similar genomic background but different chick embryo lethality, were chosen to evaluate the molecular basis for this difference.
View Article and Find Full Text PDFNature
January 2025
Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA.
Since early 2022 highly pathogenic avian influenza (HPAI) H5N1 virus infections have been reported in wild aquatic birds and poultry throughout the United States (US) with spillover into several mammalian species. In March 2024, HPAIV H5N1 clade 2.3.
View Article and Find Full Text PDFAntimicrob Steward Healthc Epidemiol
January 2025
Clinical Informatics Center, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA.
Objective: Social media has become an important tool in monitoring infectious disease outbreaks such as coronavirus disease 2019 and highly pathogenic avian influenza (HPAI). Influenced by the recent announcement of a possible human death from H5N2 avian influenza, we analyzed tweets collected from X (formerly Twitter) to describe the messaging regarding the HPAI outbreak, including mis- and dis-information, concerns, and health education.
Methods: We collected tweets involving keywords relating to HPAI for 5 days (June 04 to June 08, 2024).
Between 21 September and 6 December 2024, 657 highly pathogenic avian influenza (HPAI) A(H5N1) and A(H5N5) virus detections were reported in domestic (341) and wild (316) birds across 27 countries in Europe. Many HPAI outbreaks in domestic birds were clustered in areas with high poultry density and characterised by secondary farm-to-farm spread. Waterfowl, particularly the mute swan, were primarily affected during this reporting period, with HPAI virus detections focused on south-eastern Europe.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.