Zinc oxide (ZnO) layers consisting of grains closely packed together are grown using a solgel synthesis and spin-coating deposition process. The morphologies are characterized by atomic force microscopy and X-ray diffraction, and their optical properties are investigated by spectroscopic ellipsometry at the different stages of the growth process. The optical observations are correlated with evolution of morphology and orientation. Two remarkable evolutions are observed: gradual evolution of morphology, crystallinity, and excitonic contribution with the first deposition steps; and transformation from a poorly oriented to a c-axis oriented crystalline state featuring a large contribution of bound excitons after thermal annealing. A modified Elliott model is used to obtain the optical parameters of ZnO, including bandgap and exciton energies. A simple growth mechanism is proposed to explain the evolution of the layers in accordance with the different deposition steps.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.54.003043 | DOI Listing |
Materials (Basel)
December 2024
Department of Mechatronics Engineering, National Changhua University of Education, Changhua 50007, Taiwan.
Antimony selenide (SbSe) shows promise for photovoltaics due to its favorable properties and low toxicity. However, current SbSe solar cells exhibit efficiencies significantly below their theoretical limits, primarily due to interface recombination and non-optimal device architectures. This study presents a comprehensive numerical investigation of SbSe thin-film solar cells using SCAPS-1D simulation software, focusing on device architecture optimization and interface engineering.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Semiconductor Engineering, Gyeongsang National University, Jinjudae-ro 501beon-gil, Jinju-si, Gyeongsangnam-do, Republic of Korea.
Organic photodetectors (OPDs) are cheaper and more flexible than conventional photodetectors based on inorganic precursors, but their wider commercial application is limited by their low electron extraction efficiency under reverse bias conditions (when operating under photoconductive mode). Zinc oxide (ZnO) has shown promise as an electron transport layer for OPDs owing to its wide band gap, but its electron extraction efficiency has been limited by issues such as photoinstability and the formation of surface detects. This study investigated the effects of doping ZnO nanoparticles with indium gallium (i.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Photonics and Nanoelectronics, and BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Korea.
Colloidal quantum-dot light-emitting diodes (QD-LEDs) have been significantly improved in terms of device performance and lifetime by employing zinc oxide (ZnO) as an electron transport layer (ETL). Although atomic layer deposition (ALD) allows fabrication of uniform, high-quality ZnO films with minimal defects, the high conductivity of ZnO has hindered its straightforward application as an ETL in QD-LEDs. Herein, we propose fabrication of Al-doped ZnMgO (Al:ZnMgO) ETLs for QD-LEDs through a supercycle ALD, with alternating depositions of various metal oxides.
View Article and Find Full Text PDFRSC Adv
January 2025
Institute of Technical and Macromolecular Chemistry, University of Hamburg Bundesstraße 45 Hamburg 20146 Germany +49 40 42838 3172.
Dimethyl ether (DME) is a versatile molecule, gaining increasing interest as a viable hydrogen and energy storage solution, pivotal for the transitioning from fossil fuels to environmentally friendly and sustainable energy supply. This research explores a novel approach for the direct conversion of CO to DME in a fixed-bed reactor, combining the Cu/ZnO/AlO methanol synthesis catalyst with supported heteropolyacids (HPAs). First, various HPAs, both commercially available and custom-synthesized, were immobilized on Montmorillonite K10.
View Article and Find Full Text PDFACS Omega
December 2024
The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, Anhui, Hefei 230000, China.
The challenge of healing diabetic skin wounds presents a significant hurdle in clinical practice and scientific research. In response to this pressing concern, we have developed a temperature-sensitive, in situ-forming hydrogel comprising poly(-isopropylacrylamide---butyl acrylate) -poly(ethylene glycol) -poly(-isopropylacrylamide--butyl acrylate) copolymer, denoted as PEP, in combination with zinc oxide nanoparticles, forming what we refer to as PEP-ZnO hydrogel. The antimicrobial properties of the PEP-ZnO hydrogel against methicillin-resistant were rigorously assessed by using the bacteriostatic banding method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!