The relevance of cell type- and tumor zone-specific VEGFR-2 activation in locally advanced colon cancer.

J Exp Clin Cancer Res

Institute of Pathology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55101, Mainz, Germany.

Published: May 2015

Background: For the successful therapeutic use of inhibitors of the vascular endothelial growth factor receptor (VEGFR) pathway detailed knowledge of the mechanisms leading to tumor progression is indispensable. The main goal of this study was to determine the relevance of the VEGFR-2 activating pathway for colon carcinoma (CC) metastasis. The initial event is ligand-induced receptor activation through tyrosine autophosphorylation.

Methods: VEGFR-2, its ligands VEGF-C and VEGF-D and the phosphorylated (activated) receptor forms pVEGFR-2(Tyr1175) and pVEGFR-2(Tyr1214) were investigated immunohistochemically in different tumor compartments (intratumoral (zone 1) - invasive front (zone 2) - extratumoral soft tissue (zone 3)) and various cell types (tumor cells, inflammatory cells, macro- and microvasculature) in 84 non-metastatic, lymphogenous-metastatic and haematogenous-metastatic CC.

Results: VEGF-D produced by tumor cells has an autocrine affinity for its receptor VEGFR-2. In tumor budding regions VEGF-D-induced receptor activation by autophosphorylation at Tyr1214 seems to be a possible initial event of the VEGFR-2-mediated signaling pathway, but without effect on metastatic behaviour. In inflammatory cells of almost all CC VEGFR-2 phosphorylation at Tyr 1175 and Tyr 1214 was detectable without accompanying receptor expression, suggesting receptor activation without cell surface expression. Peritumoral inflammatory cells also expressed paracrine acting VEGF-C. The autocrine VEGF-D/VEGFR-2 signaling axis and receptor autophosphorylation at Tyr1214 appear to be main events for capillaries in all three tumor zones and for small vessels in zone 1 and 2. Independent of the metastatic status a large number of cases with capillary immunopositivity in the angiogenically active invasive front was documented, especially for VEGF-D, VEGFR-2 and pVEGFR-2(Tyr1214). VEGFR-2 positive extratumoral capillaries were significantly more common in distant metastatic CC. In all tumor compartments the investigated biomolecules were also detected in different frequencies in the macrovasculature, which is responsible for sufficient tumor vascularization. In addition, vascular paracrine-acting VEGF-C production was widely detected, but without zone and vessel-type dependence.

Conclusions: The VEGFR-2 activating pathway is closely involved in tumor cell-associated, vessel-mediated and immuno-inflammatory processes in colon carcinoma and appears to contribute to tumor survival and growth as well as maintenance of the infiltrative phenotype rather than to promote metastasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446839PMC
http://dx.doi.org/10.1186/s13046-015-0162-5DOI Listing

Publication Analysis

Top Keywords

receptor activation
12
inflammatory cells
12
tumor
11
vegfr-2
8
receptor
8
vegfr-2 activating
8
activating pathway
8
colon carcinoma
8
initial event
8
tumor compartments
8

Similar Publications

A Review of Bavachinin and Its Derivatives as Multi-therapeutic Agents.

Chem Biodivers

January 2025

Gannan Medical University, Depatment of Medicinal Chemistry, Gannan Medical University, 341000, Ganzhou, CHINA.

Extracting natural active ingredients from plants is an effective way to develop and screen modern drugs. Psoralea corylifolia is a leguminous plant whose seeds have long been used as a Traditional Chinese Medicine to treat psoriasis, rheumatism, dermatitis, and other diseases. To date, several main compounds, including coumarins, flavonoids, monoterpene phenols, and benzofurans, have been identified from the seeds of Psoralea corylifolia.

View Article and Find Full Text PDF

The NMDAR-BK channelosomes as regulators of synaptic plasticity.

Biochem Soc Trans

January 2025

Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud-sección Medicina, Universidad de La Laguna, Tenerife, ES-38071, Spain.

Large conductance voltage- and calcium-activated potassium channels (BK channels) are extensively found throughout the central nervous system and play a crucial role in various neuronal functions. These channels are activated by a combination of cell membrane depolarisation and an increase in intracellular calcium concentration, provided by calcium sources located close to BK. In 2001, Isaacson and Murphy first demonstrated the coupling of BK channels with N-methyl-D-aspartate receptors (NMDAR) in olfactory bulb neurons.

View Article and Find Full Text PDF

Ventricular arrhythmias induced by ischemia/reperfusion injury limits the therapeutic effect of early reperfusion therapy for acute myocardial infarction. This study investigated the protective effects of the β2-adrenergic receptor (β2-AR) agonist clenbuterol against ischemia/reperfusion-induced arrhythmias and the underlying mechanism. Anesthetized rats were subjected to 10-min left coronary artery occlusion and 10-min reperfusion in vivo.

View Article and Find Full Text PDF

Quinoline is a highly privileged scaffold with significant pharmacological potential. Introducing a carbonyl group into the quinoline ring generates a quinolone ring, which exhibits promising biological properties. Incorporating a carboxamide linkage at different positions within the quinoline and quinolone frameworks has proven an effective strategy for enhancing pharmacological properties, particularly anticancer potency.

View Article and Find Full Text PDF

Melanoma, a highly aggressive skin cancer, remains a significant cause of mortality despite advancements in therapeutic strategies. There is an urgent demand for developing vaccines that can elicit strong and comprehensive immune responses against this malignancy. Achieving this goal is crucial to enhance the efficacy of immunological defense mechanisms in combating this disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!