Temporal and spatial variations in phytoplankton: correlations with environmental factors in Shengjin Lake, China.

Environ Sci Pollut Res Int

School of Resources and Environmental Engineering, Anhui Biodiversity Information Center, Anhui University, Hefei, 230601, China.

Published: September 2015

Temporal and spatial variations in the phytoplankton community and environmental variables were investigated from February to July 2014, in the upper lake of Shengjin Lake, China. We identified 192 species of phytoplankton belonging to 8 phyla and 84 genera, of which 46.4% of Chlorophyta, 29.2% of Bacillariophyta, and 12.5% of Cyanophyta. There were 14 predominant species. Marked temporal and spatial variations were observed in the phytoplankton community. The total abundance of phytoplankton ranged from 3.66 × 10(5) to 867.93 × 10(5) cells/L and total biomass ranging from 0.40 to 20.89 mg/L. The Shannon-Wiener diversity index varied from 3.50 to 8.35 with an average of 5.58, revealing high biodiversity in the phytoplankton community. There were substantial temporal changes in the dominant species, from Bacillariophyta and Cryptophyta to Cyanophyta and Chlorophyta. Phytoplankton biomass and abundance showed a similar increasing trend from February to July. Pearson correlations and Redundancy analysis revealed that the most significant environmental factors influencing phytoplankton community were water temperature (T), transparency (SD), and nutrient concentration. The positive correlation between the key water bird areas and phytoplankton biomass indicated that the droppings of wintering water birds had an important influence on the phytoplankton community in the upper lake of Shengjin Lake.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-015-4640-2DOI Listing

Publication Analysis

Top Keywords

phytoplankton community
20
temporal spatial
12
spatial variations
12
shengjin lake
12
phytoplankton
10
variations phytoplankton
8
environmental factors
8
lake china
8
february july
8
upper lake
8

Similar Publications

Evaluating the tolerance of harmful algal bloom communities to copper.

Environ Pollut

January 2025

School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL. Electronic address:

Harmful algal blooms (HABs) cause severe economic and environmental impacts, including hypoxic events and the production of toxins and off-flavor compounds. Chemical treatments, such as copper sulfate pentahydrate (CuSO·5HO), are often used to mitigate the damaging effects of algal blooms. However, treatment effects are usually short-lived leading to waterbodies requiring repeated CuSO·5HO applications to control persistent algal blooms, particularly in highly eutrophic systems, such as aquaculture ponds or small agricultural impoundments.

View Article and Find Full Text PDF

Global oxygen minimum zones (OMZs) often reach hypoxia but seldom reach anoxia. Recently it was reported that Michaelis Menten constants (K) of oxidative enzymes are orders of magnitude higher than respiratory K values, and in the Hypoxic Barrier Hypothesis it was proposed that, in ecosystems experiencing falling oxygen, oxygenase enzyme activities become oxygen-limited long before respiration. We conducted a mesocosm experiment with a phytoplankton bloom as an organic carbon source and controlled dissolved oxygen (DO) concentrations in the dark to determine whether hypoxia slows carbon oxidation and oxygen decline.

View Article and Find Full Text PDF

Sexual reproduction during diatom bloom.

ISME Commun

January 2025

Ifremer, Dyneco, F-29280 Plouzané, France.

Phytoplankton supports food webs in all aquatic ecosystems. Ecological studies highlighted the links between environmental variables and species successions . However, the role of life cycle characteristics on phytoplankton community dynamics remains poorly characterized.

View Article and Find Full Text PDF

Friends and foes: symbiotic and algicidal bacterial influence on blooms.

ISME Commun

January 2025

Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates.

Harmful Algal Blooms (HABs) of the toxigenic dinoflagellate (KB) are pivotal in structuring the ecosystem of the Gulf of Mexico (GoM), decimating coastal ecology, local economies, and human health. Bacterial communities associated with toxigenic phytoplankton species play an important role in influencing toxin production in the laboratory, supplying essential factors to phytoplankton and even killing blooming species. However, our knowledge of the prevalence of these mechanisms during HAB events is limited, especially for KB blooms.

View Article and Find Full Text PDF

Limited effects of microplastics on size-fractionated phytoplankton booming in estuarine system.

Mar Environ Res

January 2025

School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, PR China.

Despite the extensive presence and long-term exposure risks of marine microplastics (MPs), their impact on phytoplankton at the community level is still not very clear, especially considering the various size classes of phytoplankton. To address this issue, we investigated the spatial load of MPs in Linhong Estuary and conducted in-situ experiments of algal culture with added MPs. Our investigation showed that the abundance of MPs varied from 8 n/L to 50 n/L, with an average of 21.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!