Immobilization of α-amylase onto a calix[4]arene derivative: Evaluation of its enzymatic activity.

Bioorg Chem

National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.

Published: June 2015

In order to enhance the cost-effectiveness practicability of enzymes in many industries such as pharmaceutical, food, medical and some other technological processes, there is great need to immobilize them onto a solid supports. In this study, a new and efficient immobilization of α-amylase from Saccharomyces cerevisiae has been developed by using the surface functionalization of calix[4]arene as support. A glutaraldehyde-containing amino group functionalized calix[4]arene was used to immobilize α-amylase covalently. In this procedure, imide bonds are formed between amino groups on the protein and aldehyde groups on the calix[4]arene surface. The surface modified support was characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM). The effect of various preparation conditions on the immobilized α-amylase process such as immobilization time, enzyme concentration, temperature and pH were investigated. The influence of pH and temperature on the activity of free and immobilized α-amylase was also studied using starch as substrate. The optimum reaction temperature and pH value for the enzymatic conversion catalyzed by the immobilized α-amylase were 25°C and 7, respectively. Compared to the free enzyme, the immobilized α-amylase retained 85% of its original activity and exhibited significant thermal stability than the free one and excellent durability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2015.04.007DOI Listing

Publication Analysis

Top Keywords

immobilized α-amylase
16
immobilization α-amylase
8
α-amylase
6
calix[4]arene
4
α-amylase calix[4]arene
4
calix[4]arene derivative
4
derivative evaluation
4
evaluation enzymatic
4
enzymatic activity
4
activity order
4

Similar Publications

Glycosaminoglycans (GAGs) are essential bone extracellular matrix molecules that regulate osteoblast differentiation. Numerous studies have explored endogenous and exogenous GAG osteoanabolic activities using appropriate in vitro and in vivo models. However, GAGs' underlying the mechanism of action and structure-function relationships need to be elucidated in detail.

View Article and Find Full Text PDF

Methane production from anaerobic pre-treatment of municipal wastewater combined with olive mill wastewater: A demonstration study.

Water Sci Technol

January 2025

The Institute of Applied Research, The Galilee Society, Shefa-Amr 2020000, Israel; Agrobics Ltd, Shefa-Amr 2020000, Israel; Prof. Ephraim Katzir Department of Biotechnology Engineering, Braude College of Engineering, Karmiel 2161002, Israel.

The advanced anaerobic technology (AAT), developed based on an immobilized high-rate anaerobic reactor, was applied as a pretreatment of municipal wastewater (WW) at Karmiel's treatment plant in Israel. The demonstration-scale AAT (21 m) system was operated at a flow rate of 100 mday municipal WW mixed with olive mill wastewater (OMW) (0.5 mday) to simulate the scenario of illegal discharge of agro-industrial WW.

View Article and Find Full Text PDF

Anthraquinone-2-sulfonate immobilized on granular activated carbon inhibits methane production during the anaerobic digestion of swine wastewater.

Water Sci Technol

January 2025

Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora (ITSON), 5 de Febrero 818 sur, Ciudad Obregón, Sonora 85000, México E-mail:

Granular activated carbon (GAC) and GAC modified with anthraquinone-2-sulfonate (AQS) were used as conductive materials during the anaerobic digestion of swine wastewater (SW). The electron transfer capacity (ETC) in the GAC-AQS was 2.1-fold higher than the unmodified GAC.

View Article and Find Full Text PDF

An effective approach for the immobilization and protection of biological entities is their encapsulation via the in situ synthesis of metal-organic frameworks (MOFs). To ensure the preservation of the bioentities, mild synthetic conditions, including aqueous media and ambient conditions (temperature and pressure), are preferred. In this study, we investigated the synthesis of various aluminum polycarboxylate-based MOFs, including the fumarate, terephthalate, amino-terephthalate, and muconate forms of MIL-53(Al), as well as the MIL-110 and MIL-160 MOF types.

View Article and Find Full Text PDF

Iron(II/III) Alters the Relative Roles of the Microbial Byproduct and Humic Acid during Chromium(VI) Reduction and Fixation by Soil-Dissolved Organic Matter.

Environ Sci Technol

January 2025

Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.

Though reduction of hexavalent chromium (Cr(VI)) to Cr(III) by dissolved organic matter (DOM) is critical for the remediation of polluted soils, the effects of DOM chemodiversity and underlying mechanisms are not fully elucidated yet. Here, Cr(VI) reduction and immobilization mediated by microbial byproduct (MBP)- and humic acid (HA)-like components in (hot) water-soluble organic matter (WSOM), (H)WSOM, from four soil samples in tropical and subtropical regions of China were investigated. It demonstrates that Cr(VI) reduction capacity decreases in the order WSOM > HWSOM and MBP-enriched DOM > HA-enriched DOM due to the higher contents of low molecular weight saturated compounds and CHO molecules in the former.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!