Fine-structure splitting (FSS) of excitons in semiconductor nanostructures is a key parameter that has significant implications in photon entanglement and polarization conversion between electron spins and photons, relevant to quantum information technology and spintronics. Here, we investigate exciton FSS in self-organized lateral InAs/GaAs quantum-dot molecular structures (QMSs) including laterally aligned double quantum dots (DQDs), quantum-dot clusters (QCs), and quantum rings (QRs), by employing polarization-resolved microphotoluminescence (μPL) spectroscopy. We find a clear trend in FSS between the studied QMSs depending on their geometric arrangements, from a large FSS in the DQDs to a smaller FSS in the QCs and QRs. This trend is accompanied by a corresponding difference in the optical polarization directions of the excitons between these QMSs, namely, the bright-exciton lines are linearly polarized preferably along or perpendicular to the [11̅0] crystallographic axis in the DQDs that also defines the alignment direction of the two constituting QDs, whereas in the QCs and QRs, the polarization directions are randomly oriented. We attribute the observed trend in the FSS to a significant reduction of the asymmetry in the lateral confinement potential of the excitons in the QRs and QCs as compared with the DQDs, as a result of a compensation between the effects of lateral shape anisotropy and piezoelectric field. Our work demonstrates that FSS strongly depends on the geometric arrangements of the QMSs, which effectively tune the degree of the compensation effects and are capable of reducing FSS even in a strained QD system to a limit similar to strain-free QDs. This approach provides a pathway in obtaining high-symmetry quantum emitters desirable for realizing photon entanglement and spintronic devices based on such nanostructures, utilizing an uninterrupted epitaxial growth procedure without special requirements for lattice-matched materials combinations, specific substrate orientations, and nanolithography.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.5b01387DOI Listing

Publication Analysis

Top Keywords

fine-structure splitting
8
lateral inas/gaas
8
inas/gaas quantum-dot
8
quantum-dot molecular
8
molecular structures
8
fss
8
photon entanglement
8
trend fss
8
geometric arrangements
8
qcs qrs
8

Similar Publications

The rotational spectrum of 2'-hydroxyacetophenone has been recorded and assigned for the first time using a Stark-modulated free-jet absorption millimeter-wave (FJ-AMMW) spectrometer in the 59.6-74.5 GHz frequency range.

View Article and Find Full Text PDF

Correlation between ligand-mediated silver species on TiO nanosheet with the photocatalytic hydrogen evolution activities.

J Colloid Interface Sci

December 2024

School of Materials Science & Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, China. Electronic address:

Metal oxide photocatalysts loaded with metal species are extremely important in photocatalysis. The physicochemical states of metal species, as well as the interaction between metal species and support, determine the transfer of charge carriers between the heterointerface, which has a significant impact on photocatalytic activity. Here, we prepared anatase TiO nanosheets (TIO) modified with different Ag species, including single atoms, clusters, and nanoparticles, using a ligand-mediated method.

View Article and Find Full Text PDF

Isomerism of molecular structures is often encountered in the field of organic semiconductors, but little is known about how it can impact electronic and charge transport properties in thin films. This study reveals the molecular orientation, electronic structure, and intermolecular interactions of two isomeric thienoacenes (DN4T and isoDN4T) in thin films, in relation to their charge transport properties. Utilizing scanning tunneling microscopy (STM), angle-resolved photoemission spectroscopy (ARUPS), and near-edge X-ray absorption fine structure measurements (NEXAFS), we systematically analyze the behavior of these isomers from submonolayer to multilayer coverage on highly ordered pyrolytic graphite (HOPG) as substrates.

View Article and Find Full Text PDF

MgZnO possesses a tunable bandgap and can be prepared at relatively low temperatures, making it suitable for developing optoelectronic devices. MgZnO (~0.1) films were grown on sapphire by metal-organic vapor phase epitaxy under different substrate-growth temperatures of 350-650 °C and studied by multiple characterization technologies like X-ray diffraction (XRD), spectroscopic ellipsometry (SE), Raman scattering, extended X-ray absorption fine structure (EXAFS), and first-principle calculations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!