It is known from experiments that in the polymer electrolyte system, which contains poly(ethylene oxide) chains (PEO), lithium-cations (Li(+)), and bis(trifluoromethanesulfonyl)imide-anions (TFSI(-)), the cation and the anion diffusion and the ionic conductivity exhibit a similar chain-length dependence: with increasing chain length, they start dropping steadily, and later, they saturate to constant values. These results are surprising because Li-cations are strongly correlated with the polymer chains, whereas TFSI-anions do not have such bonding. To understand this phenomenon, we perform molecular dynamics simulations of this system for four different polymer chain lengths. The diffusion results obtained from our simulations display excellent agreement with the experimental data. The cation transport model based on the Rouse dynamics can successfully quantify the Li-diffusion results, which correlates Li diffusion with the polymer center-of-mass motion and the polymer segmental motion. The ionic conductivity as a function of the chain length is then estimated based on the chain-length-dependent ion diffusion, which shows a temperature-dependent deviation for short chain lengths. We argue that in the first regime, counterion correlations modify the conductivity, whereas for the long chains, the system behaves as a strong electrolyte.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp512734gDOI Listing

Publication Analysis

Top Keywords

chain length
12
polymer chain
8
ionic conductivity
8
chain lengths
8
polymer
7
chain
5
dependence ion
4
ion dynamics
4
dynamics polymer
4
length polyethylene
4

Similar Publications

Genetic dissection of foxtail millet bristles using combined QTL mapping and RNA-seq.

Theor Appl Genet

January 2025

College of Agriculture, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, China.

QTL mapping of two RIL populations in multiple environments revealed a consistent QTL for bristle length, and combined with RNA-seq, a potential candidate gene influencing bristle length was identified. Foxtail millet bristles play a vital role in increasing yields and preventing bird damage. However, there is currently limited research on the molecular regulatory mechanisms underlying foxtail millet bristle formation, which constrains the genetic improvement and breeding of new foxtail millet varieties.

View Article and Find Full Text PDF

Peptide Inhibitor Assay for Allocating Functionally Important Accessible Sites Throughout a Protein Chain: Restriction Endonuclease EcoRI as a Model Protein System.

BioTech (Basel)

December 2024

The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara 903-0213, Okinawa, Japan.

Functionally important amino acid sequences in proteins are often located at multiple sites. Three-dimensional structural analysis and site-directed mutagenesis may be performed to allocate functional sites for understanding structure‒function relationships and for developing novel inhibitory drugs. However, such methods are too demanding to comprehensively cover potential functional sites throughout a protein chain.

View Article and Find Full Text PDF

Identification of novel rodent and shrew orthohepeviruses sheds light on hepatitis E virus evolution.

Zool Res

January 2025

Institute of Preventive Medicine, School of Public Health, Dali University, Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Yunnan Key Laboratory of Zoonotic Disease Cross-border Prevention and Quarantine, Dali, Yunnan 671000, China. E-mail:

The family has seen an explosive expansion in its host range in recent years, yet the evolutionary trajectory of this zoonotic pathogen remains largely unknown. The emergence of rat hepatitis E virus (HEV) has introduced a new public health threat due to its potential for zoonotic transmission. This study investigated 2 464 wild small mammals spanning four animal orders, eight families, 21 genera, and 37 species in Yunnan Province, China.

View Article and Find Full Text PDF

Objective: Accelerated ageing indexed by telomere attrition is suggested in schizophrenia spectrum- (SCZ) and bipolar disorders (BD). While inflammation may promote telomere shortening, few studies have investigated the association between telomere length (TL) and markers of immune activation and inflammation in severe mental disorders.

Methods: Leucocyte TL defined as telomere template/amount of single-copy gene template (T/S ratio), was determined in participants with SCZ ( = 301) or BD ( = 211) and a healthy control group (HC, = 378).

View Article and Find Full Text PDF

Novel 327bp Alu element insertion in LDLR exon 17 causes alternative splicing and familial hypercholesterolemia.

J Clin Lipidol

December 2024

Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Apollo Genomics Institute, Indraprastha Apollo Hospital, New Delhi, 110076, India. Electronic address:

Background: Homozygous familial hypercholesterolemia (HoFH) is a severe form of familial hypercholesterolemia (FH), characterized by high low-density lipoprotein cholesterol (LDL-C) levels and increased coronary artery disease risk. This study reports a novel Alu insertion in the LDLR gene in a consanguineous Indian family, causing FH.

Objective: To identify and characterize the mutation causing HoFH in a proband and their family members.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!