Novel water-soluble chitosan-isoniazid conjugates were synthesized by two methods: (1) the carbodiimide method using isoniazid (INH) and N-(2-carboxyethyl)chitosan (CEC), and (2) the reaction between INH and N-(3-chloro-2-hydroxypropyl)chitosan (CHPC). The solubility of the conjugates under physiological conditions was enhanced by phosphorylation. Method (1) is preferable in terms of obtaining conjugates with a high content of active substance; depending on reaction conditions, the degree of substitution in the INH-CEC conjugates varies from 0.08 to 0.39. Ultrasound treatment increased the reaction rate by a factor of 1.3-1.5, but caused partial degradation of the polymer. Consecutive modification led to a considerable decrease in polymer biodegradability in the following order: chitosan>CEC or CHPC>conjugate. In vitro screening of the antimicrobial activity against Mycobacterium tuberculosis H37Rv demonstrated a comparable or slightly higher minimum inhibitory concentration for conjugates than for INH itself (0.20, 0.25, and 1.05 μg INH/mL for INH, CEC-INH, and CHPC-INH, respectively). A slug mucosal irritation test employing Limax flavus revealed a lower toxicity for the conjugates than for INH by a factor of 3-4; the most noticeable toxicity decrease was observed for the conjugates obtained by method (1). Studies of acute toxicity in mice revealed a 3-4-fold increase in median lethal dose for the conjugates compared with INH (LD50 210, 850, and 650 mg INH/kg for INH, CEC-INH, and CHPC-INH, respectively).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2015.03.060 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!