Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bilayer films consisting of one layer of PCL with either one of thermoplastic starch (S) or one of thermoplastic starch with 5% PCL (S95) were obtained by compression molding. Before compression, aqueous solutions of ascorbic acid or potassium sorbate were sprayed onto the S or S95 layers in order to plasticize them and favor layer adhesion. S95 films formed bilayers with PCL with very good adhesion and good mechanical performance, especially when potassium sorbate was added at the interface. All bilayers enhanced their barrier properties to water vapour (up to 96% compared to net starch films) and oxygen (up to 99% compared to PCL pure). Bilayers consisting of PCL and starch containing 5% PCL, with potassium sorbate at the interface, showed the best mechanical and barrier properties and interfacial adhesion while having active properties, associated with the antimicrobial action of potassium sorbate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2015.03.080 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!