The anti-invasive and anti-proliferative effects of betulins and abietane derivatives was systematically tested using an organotypic model system of advanced, castration-resistant prostate cancers. A preliminary screen of the initial set of 93 compounds was performed in two-dimensional (2D) growth conditions using non-transformed prostate epithelial cells (EP156T), an androgen-sensitive prostate cancer cell line (LNCaP), and the castration-resistant, highly invasive cell line PC-3. The 25 most promising compounds were all betulin derivatives. These were selected for a focused secondary screen in three-dimensional (3D) growth conditions, with the goal to identify the most effective and specific anti-invasive compounds. Additional sensitivity and cytotoxicity tests were then performed using an extended cell line panel. The effects of these compounds on cell cycle progression, mitosis, proliferation and unspecific cytotoxicity, versus their ability to specifically interfere with cell motility and tumor cell invasion was addressed. To identify potential mechanisms of action and likely compound targets, multiplex profiling of compound effects on a panel of 43 human protein kinases was performed. These target de-convolution studies, combined with the phenotypic analyses of multicellular organoids in 3D models, revealed specific inhibition of AKT signaling linked to effects on the organization of the actin cytoskeleton as the most likely driver of altered cell morphology and motility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4428838 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126111 | PLOS |
Int Immunopharmacol
January 2025
Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China. Electronic address:
Intestinal injury of weaned piglets often leads to reduced immunity, diarrhea and growth retardation, resulting in significant economic losses to agriculture. Betulinic acid (BA) is a natural plant-derived active ingredient with multiple pharmacological activities including immune modulation and anti-inflammatory. This study was aimed to investigate the potential mechanism that BA as a feed additive mitigated lipopolysaccharide (LPS)-induced intestinal injury in piglets.
View Article and Find Full Text PDFRSC Adv
January 2025
University of Wuppertal, School of Mathematics and Natural Sciences Gaussstrasse 2042119 Wuppertal Germany
Betulinic acid and other herbal pentacyclic triterpenes have attracted interest in cancer research as these natural products induce apoptosis and suppress tumor progression. However, the molecular basis of the antitumor effect is still unknown. Here we show that monophthalates of betulinic acid and related triterpenes inhibit GDP/GTP exchange in oncogenic K-RAS4B proteins the PI3K/AKT downstream cascade.
View Article and Find Full Text PDFBioorg Med Chem
January 2025
Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China. Electronic address:
Betulinic acid (BA) is a kind of naturally occurring lupane pentacyclic triterpenoid, possessing various biological activities including antiviral, anti-inflammatory and antitumor activity. Covalent inhibitors, characterized by electrophilic warheads that form covalent bonds with specific amino acid residues of target proteins, have garnered enormous attention in anticancer agent discovery over the past decade owing to their exceptional selectivity and efficacy. In this study, BA was structurally modified with electrophilic groups, and 23 derivatives of BA were synthesized.
View Article and Find Full Text PDFElectrophoresis
December 2024
Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia.
An empirical equation relating electrophoretic mobility and ionic strength was proposed. The equation includes a number of parameters that are found using the mobilities of reference ions: two coefficients in the numerator describing the linear relationship of the multiplier in front of the square root of the ionic strength with the product of the ion mobility in the background electrolyte (BGE) without additives by the modulus of the charge number, raised to a certain power, and also the multiplier in the denominator before the square root of the ionic strength. The proposed equation was tested using the mobilities measured in BGEs with the addition of sodium chloride to adjust ionic strength and sulfated β-cyclodextrin (S-β-CD) for 11 anions with charge numbers from -1 to -4.
View Article and Find Full Text PDFBetulin is a bioactive compound found in large quantities in birch bark and has a triterpene pentacyclic structure. Through the oxidation of betulin, betulinic acid is obtained, which is found in large quantities in nature. Betulin and betulinic acid have multiple pharmacological properties such as antiviral, anti-inflammatory, and anticancer properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!