Mechanical temporal fluctuation induced distance and force systematic errors in Casimir force experiments.

J Phys Condens Matter

Yale University, Department of Physics, PO Box 208120, New Haven, CT 06520-8120, USA.

Published: June 2015

The basic theory of temporal mechanical fluctuation induced systematic errors in Casimir force experiments is developed and applications of this theory to several experiments is reviewed. This class of systematic error enters in a manner similar to the usual surface roughness correction, but unlike the treatment of surface roughness for which an exact result requires an electromagnetic mode analysis, time dependent fluctuations can be treated exactly, assuming the fluctuation times are much longer than the zero point and thermal fluctuation correlation times of the electromagnetic field between the plates. An experimental method for measuring absolute distance with high bandwidth is also described and measurement data presented.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/27/21/214016DOI Listing

Publication Analysis

Top Keywords

fluctuation induced
8
systematic errors
8
errors casimir
8
casimir force
8
force experiments
8
surface roughness
8
mechanical temporal
4
fluctuation
4
temporal fluctuation
4
induced distance
4

Similar Publications

Background: Catechol-O-methyl transferase (COMT) inhibitors are routinely used to manage motor fluctuations in Parkinson's disease (PD). We assessed the effect of opicapone on motor symptom severity in levodopa-treated patients without motor complications.

Methods: This was a randomized, double-blind, 24-week, placebo-controlled study of opicapone 50 mg as adjunct to levodopa (NCT04978597).

View Article and Find Full Text PDF

Probing Single-Cell Adhesion Kinetics and Nanomechanical Force with Surface Plasmon Resonance Imaging.

ACS Nano

January 2025

Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China.

Single cell adhesion plays a significant role in numerous physiological and pathological processes. Real-time imaging and quantification of single cell adhesion kinetics and corresponding cell-substrate mechanical interaction forces are crucial for elucidating the cellular mechanisms involved in tissue formation, immune responses, and cancer metastasis. Here, we present the development of a plasmonic-based nanomechanical sensing and imaging system (PNMSi) for the real-time measurement of single cell adhesion kinetics and associated nanomechanical forces with plasmonic tracking and monitoring of cell-substrate interactions and the accompanying nanoscale fluctuations.

View Article and Find Full Text PDF

Norepinephrine-mediated slow vasomotion drives glymphatic clearance during sleep.

Cell

December 2024

Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen N, Denmark; Center for Translational Neuromedicine, University of Rochester, Rochester, NY 14627, USA. Electronic address:

As the brain transitions from wakefulness to sleep, processing of external information diminishes while restorative processes, such as glymphatic removal of waste products, are activated. Yet, it is not known what drives brain clearance during sleep. We here employed an array of technologies and identified tightly synchronized oscillations in norepinephrine, cerebral blood volume, and cerebrospinal fluid (CSF) as the strongest predictors of glymphatic clearance during NREM sleep.

View Article and Find Full Text PDF

Commensal fungi, a force to be reckoned with.

Cell Host Microbe

January 2025

Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China. Electronic address:

Fungal symbionts play a key role in maintaining host homeostasis. In a recent issue of Nature, Liao et al. show that Kazachstania pintolopesii, a symbiotic fungus in mice, is shielded from the host immune system during homeostasis but induces type 2 immunity during mucus fluctuations.

View Article and Find Full Text PDF

Comparative study of the variability of the phytoplankton biomass in two upwelling zones of the western Arabian Sea from 2003 to 2020.

Mar Pollut Bull

January 2025

National Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China. Electronic address:

This study investigates the monthly and interannual variations in chlorophyll-a (Chl-a) concentrations in the Oman and Somalia upwelling zones using satellite data from 2003 to 2020. Bivariate Wavelet Coherence (BWC) and Multiple Wavelet Coherence (MWC) analyses were applied to identify the key factors influencing Chl-a concentration changes. The results show that Ekman pumping and Ekman transport induced by the southwest monsoon are crucial for phytoplankton blooms along the coast and offshore in both upwelling zones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!