Sludge fermentation between pH 4 and 11 was investigated to generate volatile fatty acids (VFA). Despite the highest sludge solubilization of 25.9% at pH 11, VFA accumulation was optimized at pH 8 (12.5% out of 13.1% sludge solubilization). 454 pyrosequencing identified wide diversity of acidogens in bioreactors operated at the various pHs, with Tissierella, Petrimonas, Proteiniphilum, Levilinea, Proteiniborus and Sedimentibacter enriched and contributing to the enhanced fermentation at pH 8. Hydrolytic enzymatic assays determined abiotic effect to be the leading cause for improved solubilization under high alkaline condition but the environmental stress at pH 9 and above might lead to disrupt biological activities and eventually VFA production. Furthermore, molecular weight (MW) characterization of the soluble fractions found large MW aromatic substances at pH 9 and above, that is normally associated with poor biodegradability, making them disadvantageous for subsequent bioprocesses. The findings provided information to better understand and control sludge fermentation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2015.04.087 | DOI Listing |
J Environ Manage
January 2025
Engineering Department, University of Palermo, Viale delle Scienze, Ed. 8, 90128, Palermo, Italy.
The products of an advanced sewage sludge fermentation process can be used to generate polyhydroxyalkanoates (PHAs), precursors of bioplastics considered excellent candidates for replacing petroleum-derived plastics. The aerobic feast-anoxic famine cycling strategy has proven to be an efficient method for enriching sewage sludge microbiota with PHA-producing microorganisms. This work evaluated the effect of different carbon to nitrogen ratios (C/N) of 3.
View Article and Find Full Text PDFWater Res X
May 2025
National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
Although the treatment of sludge with free nitrous acid can effectively recover short chain fatty acids, the feasibility of sequential nitrite reduction and methane recovery without acidic pH adjustment is still scarcely studied. Therefore, this study aimed to provide insights into the effect of nitrite at different levels on nitrite reduction and methane production. The results showed that the nitrite concentrations of 100, 200, 400 and 800 mg/L were completely reduced in 1, 2, 2 and 4 days, respectively.
View Article and Find Full Text PDFBioresour Technol
January 2025
Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, IVAGRO-Wine and Agrifood Research Institute, University of Cadiz, 11510 Puerto Real, Cadiz, Spain.
This study investigates the effects of ozone pre-treatment on two types of organic wastes: secondary sludge (SS) and wine vinasse (WV). Ozone pre-treatment of SS, a semi-solid waste, significantly increased the Dissolved Organic Carbon (DOC) and Total Volatile Fatty Acids (TVFAs) through hydrolysis. Conversely, ozone pre-treatment of WV, a liquid organic waste, reduced the availability of soluble biodegradable substrates and decreased the concentration of carboxylic acids with carbon chain length higher than 4.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
With the aim of exploring the association between microbial response and volatile fatty acids (VFAs) production in sludge and chicken manure co-fermentation with total solids (TS) controlled, four fermentation experimental groups (TS = 20, 40, 60, and 80 g/L) were established in this study. The results demonstrated that the yield of VFAs reached the peak (530.08 mg COD/g VSS) at the 40 g-TS group.
View Article and Find Full Text PDFBioresour Bioprocess
January 2025
Biotechnology Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, Móstoles, Madrid, 28935, Spain.
This research investigated the acidogenic fermentation (AF) of sugar cane molasses in an up-flow anaerobic sludge blanket (UASB) reactor for the production of carboxylates. The first step was to assess the optimum process temperature (25, 35 or 55 ºC) using two different granular inocula, one from a brewery company (BGS) and other from a paper plant company (PGS). These experiments determined that the most suitable temperature for carboxylates production was 25 ºC, obtaining higher bioconversions (27.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!