Differentiation and maturation of oligodendroglial cells are postnatal processes that involve specific morphological changes correlated with the expression of stage-specific surface antigens and functional voltage-gated ion channels. A small fraction of oligodendrocyte progenitor cells (OPCs) generated during development are maintained in an immature and slowly proliferative or quiescent state in the adult central nervous system (CNS) representing an endogenous reservoir of immature cells. Adenosine receptors are expressed by OPCs and a key role of adenosine in oligodendrocyte maturation has been recently recognized. As evaluated on OPC cultures, adenosine, by stimulating A1 receptors, promotes oligodendrocyte maturation and inhibits their proliferation; on the contrary, by stimulating A2A receptors, it inhibits oligodendrocyte maturation. A1 and A2A receptor-mediated effects are related to opposite modifications of outward delayed rectifying membrane K(+) currents (IK) that are involved in the regulation of oligodendrocyte differentiation. Brain A1 and A2A receptors might represent new molecular targets for drugs useful in demyelinating pathologies, such as multiple sclerosis (MS), stroke and brain trauma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4408841PMC
http://dx.doi.org/10.3389/fncel.2015.00155DOI Listing

Publication Analysis

Top Keywords

oligodendrocyte maturation
12
role adenosine
8
adenosine oligodendrocyte
8
a2a receptors
8
oligodendrocyte
6
maturation
5
oligodendrocyte precursor
4
precursor maturation
4
maturation differentiation
4
differentiation maturation
4

Similar Publications

Preterm birth exposes the neonate to hypoxic-ischaemic and excitotoxic insults that impair neurodevelopment and are magnified by the premature loss of placentally supplied, inhibitory neurosteroids. The cerebellum is a neuronally dense brain region, which undergoes critical periods of development during late gestation, when preterm births frequently occur. We propose that neurosteroid replacement therapy using tiagabine and zuranolone will protect the cerebellum against preterm-associated insults.

View Article and Find Full Text PDF

To myelinate axons, oligodendrocyte precursor cells (OPCs) must stop dividing and differentiate into premyelinating oligodendrocytes (preOLs). PreOLs are thought to survey and begin ensheathing nearby axons, and their maturation is often stalled at human demyelinating lesions. Lack of genetic tools to visualize and manipulate preOLs has left this critical differentiation stage woefully understudied.

View Article and Find Full Text PDF

Various mature tissue-resident cells exhibit progenitor characteristics following injury. However, the existence of endogenous stem cells with multiple lineage potentials in the adult spinal cord remains a compelling area of research. In this study, we present a cross-species investigation that extends from development to injury.

View Article and Find Full Text PDF

The study aimed to understand the impact of the sonic-hedge signal pathway (SHH) on mouse neural stem cells. We manipulated the pathway using purmorphamine (Pur) and Gant 61 and observed the effects on cell viability, neurosphere formation, and gene expression. We found that activating the SHH pathway with Pur increased cell viability, neurosphere formation, and the expression of specific genes, promoting the differentiation of neural stem cells into mature cells.

View Article and Find Full Text PDF

Nuclear receptor PPARγ targets GPNMB to promote oligodendrocyte development and remyelination.

Brain

January 2025

Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.

Myelin injury occurs in brain ageing and in several neurological diseases. Failure of spontaneous remyelination is attributable to insufficient differentiation of oligodendrocyte precursor cells (OPCs) into mature myelin-forming oligodendrocytes in CNS demyelinated lesions. Emerging evidence suggests that peroxisome proliferator-activated receptor γ (PPARγ) is the master gatekeeper of CNS injury and repair and plays an important regulatory role in various neurodegenerative diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!