Harsh environments and severe winters have been hypothesized to favor improvement of the cognitive abilities necessary for successful foraging. Geographic variation in winter climate, then, is likely associated with differences in selection pressures on cognitive ability, which could lead to evolutionary changes in cognition and its neural mechanisms, assuming that variation in these traits is heritable. Here, we focus on two species of food-caching chickadees (genus Poecile), which rely on stored food for survival over winter and require the use of spatial memory to recover their stores. These species also exhibit extensive climate-related population level variation in spatial memory and the hippocampus, including volume, the total number and size of neurons, and adults' rates of neurogenesis. Such variation could be driven by several mechanisms within the context of natural selection, including independent, population-specific selection (local adaptation), environment experience-based plasticity, developmental differences, and/or epigenetic differences. Extensive data on cognition, brain morphology, and behavior in multiple populations of these two species of chickadees along longitudinal, latitudinal, and elevational gradients in winter climate are most consistent with the hypothesis that natural selection drives the evolution of local adaptations associated with spatial memory differences among populations. Conversely, there is little support for the hypotheses that environment-induced plasticity or developmental differences are the main causes of population differences across climatic gradients. Available data on epigenetic modifications of memory ability are also inconsistent with the observed patterns of population variation, with birds living in more stressful and harsher environments having better spatial memory associated with a larger hippocampus and a larger number of hippocampal neurons. Overall, the existing data are most consistent with the hypothesis that highly predictable differences in winter climate drive the evolution and maintenance of differences among populations both in cognition and in the brain via local adaptations, at least in food-caching parids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/icb/icv029 | DOI Listing |
NeuroSci
December 2024
Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece.
Although spatial memory has been widely studied in rodents, developmental studies involving humans are limited in number and sample size. We designed and studied the validity of two simple experimental setups for the evaluation of spatial memory and navigation development. The dataset of this study was composed of 496 schoolchildren, from 4 to 15 years old.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
Department of Anatomy, Histology and Embryology, Medical Faculty, Medical University Plovdiv, 4002 Plovdiv, Bulgaria.
Epilepsy is a common brain function disorder. The present study aims to evaluate the long-term effect of perampanel (PRM) and lacosamide (LCM), administered singly in a high-dose or in a low-dose combination of both, on comorbid anxiety, cognitive impairment, BDNF, and Cyclin D1 hippocampal expression in an experimental model of temporal lobe epilepsy with lithium-pilocarpine. PRM (3 mg/kg, p.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
Department of Histology and Embryology, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03030 Afyonkarahisar, Turkey.
Modified citrus pectin (MCP) modulates galectin-3, a key player in neuroinflammation linked to Alzheimer's disease. By inhibiting galectin-3, MCP reduces the brain's inflammatory response and may alleviate cognitive decline. This study examines MCP's impact on neuroinflammation, cognitive function, and its role in galectin-3 inhibition in a dementia model.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
December 2024
Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, 1000 E University Ave, Laramie, Wyoming, 82071, USA.
Although decades of research have deepened our understanding of the proximate triggers and ultimate drivers of migrations for a range of taxa, how populations establish migrations remains a mystery. However, recent studies have begun to illuminate the interplay between genetically inherited and learned migrations, opening the door to the evaluation of how migration may be learned, established, and maintained. Nevertheless, for migratory species where the role of learning is evident, we lack a comprehensive framework for understanding how populations learn specific routes and refine migratory movements over time (i.
View Article and Find Full Text PDFFront Artif Intell
December 2024
School of Industrial Engineering and Management, Oklahoma State University, Stillwater, OK, United States.
The ability to accurately predict the yields of different crop genotypes in response to weather variability is crucial for developing climate resilient crop cultivars. Genotype-environment interactions introduce large variations in crop-climate responses, and are hard to factor in to breeding programs. Data-driven approaches, particularly those based on machine learning, can help guide breeding efforts by factoring in genotype-environment interactions when making yield predictions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!