The intestinal mucosa forms the first line of defense against infections mediated by enteric pathogens such as salmonellae. Here we exploited intestinal "organoids" (iHOs) generated from human induced pluripotent stem cells (hIPSCs) to explore the interaction of Salmonella enterica serovar Typhimurium with iHOs. Imaging and RNA sequencing were used to analyze these interactions, and clear changes in transcriptional signatures were detected, including altered patterns of cytokine expression after the exposure of iHOs to bacteria. S. Typhimurium microinjected into the lumen of iHOs was able to invade the epithelial barrier, with many bacteria residing within Salmonella-containing vacuoles. An S. Typhimurium invA mutant defective in the Salmonella pathogenicity island 1 invasion apparatus was less capable of invading the iHO epithelium. Hence, we provide evidence that hIPSC-derived organoids are a promising model of the intestinal epithelium for assessing interactions with enteric pathogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4468523PMC
http://dx.doi.org/10.1128/IAI.00161-15DOI Listing

Publication Analysis

Top Keywords

interaction salmonella
8
salmonella enterica
8
enterica serovar
8
serovar typhimurium
8
human induced
8
induced pluripotent
8
pluripotent stem
8
stem cells
8
enteric pathogens
8
typhimurium
4

Similar Publications

Whipworms (Trichuris spp) are ubiquitous parasites of humans and domestic and wild mammals that cause chronic disease, considerably impacting human and animal health. Egg hatching is a critical phase in the whipworm life cycle that marks the initiation of infection, with newly hatched larvae rapidly migrating to and invading host intestinal epithelial cells. Hatching is triggered by the host microbiota; however, the physical and chemical interactions between bacteria and whipworm eggs, as well as the bacterial and larval responses that result in the disintegration of the polar plug and larval eclosion, are not completely understood.

View Article and Find Full Text PDF

Isolation, purification and identification of antibacterial peptides from Jinhua ham broth and molecular simulation analyses of their interaction with bacterial porins.

Food Chem

January 2025

Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:

The bioactive peptides in Jinhua ham could be released into the broth during cooking. After comparing peptide antibacterial activity from Jinhua ham broth with varying cooking durations, the cooking-2-h broths were selected for further analysis using cation-exchange and reverse-phase-liquid chromatography. The purified peptide sequences were subsequently synthesized and tested for their antibacterial activity.

View Article and Find Full Text PDF

A variety of phytochemicals from different plants are collected by bees into bee pollen granules. This research focused on evaluating the effects of lactic acid fermentation and enzymatic hydrolysis on the antibacterial activity of bee pollen and its interaction with antibiotics. There is limited knowledge regarding the interactions between treated bee pollen extracts and antibiotics, and this study contributes to the field by providing new insights into the antibacterial activity of pollen subjected to eight distinct treatment methods.

View Article and Find Full Text PDF

, non-typhoidal spp., and enteropathogenic/enterohemorrhagic (EPEC/EHEC) are leading causes of food-borne illness worldwide. has been used to model EPEC and EHEC infection in mice.

View Article and Find Full Text PDF

Bacterial enteritis caused by Salmonella Kedougou after returning from Thailand: A case report.

J Infect Chemother

January 2025

Department of Infectious Diseases, Graduate School of Medical Sciences, Nagoya City University, Aichi, Japan; Department of Clinical Infectious Diseases, Graduate School of Medical Sciences, Nagoya City University, Aichi, Japan; Department of Infectious Diseases, Nagoya City University East Medical Center, Aichi, Japan. Electronic address:

Non-typhoid Salmonella (NTS) includes many serotypes that differ in host, geographic distribution, and virulence. We report the case of a 64-year-old man who developed enteritis caused by Salmonella Kedougou without bacteremia after returning from Thailand. The patient stayed in Chiang Mai, Thailand, for 10 days to play golf and was hospitalized with fever, chills, watery diarrhea, and vomiting on the day the patient returned to Japan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!