Metal complexes of curcumin--synthetic strategies, structures and medicinal applications.

Chem Soc Rev

Chemisches Institut der Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.

Published: August 2015

This Tutorial Review presents an overview on the synthesis, characterization and applications of metal complexes containing curcumin (=1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) and its derivatives as ligands. Innovative synthetic strategies leading to soluble and crystallizable metal curcumin complexes are outlined in detail. Special emphasis is placed on the highly promising and exciting medicinal applications of metal curcumin complexes, with the three most important areas being anticancer activity and selective cytotoxicity, anti-Alzheimer's disease activity, and antioxidative/neuroprotective effects. Overall, this Tutorial Review provides the first general overview of this emerging and rapidly expanding field of interdisciplinary research.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5cs00088bDOI Listing

Publication Analysis

Top Keywords

metal complexes
8
medicinal applications
8
tutorial review
8
applications metal
8
metal curcumin
8
curcumin complexes
8
metal
4
complexes curcumin--synthetic
4
curcumin--synthetic strategies
4
strategies structures
4

Similar Publications

Focal adhesions (FAs) are force-bearing multiprotein complexes, whose nanoscale organization and signaling are essential for cell growth and differentiation. However, the specific organization of FA components to exert spatiotemporal activation of FA proteins for force sensing and transduction remains unclear. In this study, we unveil the intricacies of FA protein nanoarchitecture and that its dynamics are coordinated by a molecular scaffold protein, BNIP-2, to initiate downstream signal transduction for cardiomyoblast differentiation.

View Article and Find Full Text PDF

Adenosine 5'-triphosphate (ATP) plays a pivotal role as an essential intermediate in energy metabolism, influencing nearly all biological metabolic processes. Cancer cells predominantly rely on glycolysis for ATP production, differing significantly from normal cells. Real-time in situ monitoring and rapid response to intracellular ATP levels offers more valuable insights into cancer cell physiology.

View Article and Find Full Text PDF

Two 3D/2D anionic metal-organic frameworks (MOFs), [Cu(HL)] () and [Mn(L)(DMF)] ( (DMF = ,-dimethylformamide), were synthesized by the solvothermal reaction of metal salts and 5'-(4-carboxyphenyl)-2',4',6'-triethyl-[1,1':3',1″-terphenyl]-4,4″-dicarboxylic acid (HL). Single-crystal X-ray diffraction analyses revealed that complex shows three-dimensional (3D) frameworks with a (3,6)-connected 3-fold interpenetrated topology with the Schläfli symbols of {4.6}{4.

View Article and Find Full Text PDF

The systematic nucleophilic functionalization of the cationic pentaphosphole ligand complex [Cp*Fe(η4-P5Me)][OTf] (A) with group 16/17 nucleophiles is reported. This method represents a highly reliable and versatile strategy for the design of novel transition-metal complexes featuring twofold substituted end-deck cyclo-P5 ligands, bearing unprecedented hetero-element substituents. By the reaction of A with classical group 16 nucleophiles, complexes of the type [Cp*Fe(η4-P5MeE)] (E = OEt (1), OtBu (2), SPh (3), SePh (4)) are obtained.

View Article and Find Full Text PDF

Importance: Despite the high prevalence of KRAS alterations in pancreatic ductal adenocarcinoma (PDAC), the clinical impact of common KRAS mutations with different cytotoxic regimens is unknown. This evidence is important to inform current treatment and provide a benchmark for emergent targeted KRAS therapies in metastatic PDAC.

Objective: To assess the clinical implications of common KRAS G12 mutations in PDAC and to compare outcomes of standard-of-care multiagent therapies across these common mutations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!