Muscarinic acetylcholine receptors (mAChRs) are G protein-coupled receptors (GPCRs) that are activated by the agonists acetylcholine and muscarine and blocked by several antagonists, among them atropine. In mammals five mAChRs (m1-m5) exist of which m1, m3, and m5 are coupled to members of the Gq/11 family and m2 and m4 to members of the Gi/0 family. We have recently shown that Drosophila melanogaster and other arthropods have two mAChRs, named A and B, where the A-type has the same pharmacology as the mammalian mAChRs, while the B-type has a very low affinity to muscarine and no affinity to classical antagonists such as atropine. Here, we find that the D. melanogaster A-type mAChR is coupled to Gq/11 and D. melanogaster B-type mAChR to Gi/0. Furthermore, by comparing the second and third intracellular loops of all animal mAChRs for which the G protein coupling has been established, we could identify several amino acid residues likely to be specific for either Gq/11 or Gi/0 coupling. Using these hallmarks for specific mAChR G protein interaction we found that all protostomes with a sequenced genome have one mAChR coupled to Gq/11 and one to four mAChRs coupled to Gi/0. Furthermore, in protostomes, probably all A-type mAChRs are coupled to Gq/11 and all B-type mAChRs to G0/i.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2015.04.141 | DOI Listing |
Sci Rep
January 2025
Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, 390-8621, Japan.
Lysophosphatidylethanolamine (LPE) is a bioactive lipid mediator involved in diverse cellular functions. In this study, we investigated the effects of three LPE species, 1-palmitoyl LPE (16:0 LPE), 1-stearoyl LPE (18:0 LPE), and 1-oleoyl LPE (18:1 LPE) on pre-osteoblast MC3T3-E1 cells. All LPE species stimulated cell proliferation and activated the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) 1/2.
View Article and Find Full Text PDFJ Struct Biol
December 2024
Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45 Yushima Bunkyo-ku 113-8510, Tokyo, Japan. Electronic address:
Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are bioactive lysophospholipids derived from cell membranes that activate the endothelial differentiation gene family of G protein-coupled receptors. Activation of these receptors triggers multiple downstream signaling cascades through G proteins such as Gi/o, Gq/11, and G12/13. Therefore, LPA and S1P mediate several physiological processes, including cytoskeletal dynamics, neurite retraction, cell migration, cell proliferation, and intracellular ion fluxes.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China. Electronic address:
G protein-coupled receptor 39 (GPR39), a member of the growth hormone-releasing peptide family, exhibits widespread expression across various tissues and demonstrates high constitutive activity, primarily activated by zinc ions. It plays critical roles in cell proliferation, differentiation, survival, apoptosis, and ion transport through the recruitment of Gq/11, Gs, G12/13, and β-arrestin proteins. GPR39 is involved in anti-inflammatory and antioxidant responses, highlighting its diverse pathophysiological functions.
View Article and Find Full Text PDFMethods Mol Biol
October 2024
Metabolism and Systems Science and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham, UK.
G protein-coupled receptors that activate Gq/11 regulate a range of physiological processes including neurotransmission, energy homeostasis, blood pressure regulation, and calcium homeostasis. Activation of Gq/11-coupled receptors stimulates the generation of inositol 1,4,5-trisphosphate (IP3), which mobilizes intracellular calcium release from the endoplasmic reticulum. This chapter describes an assay that uses a NanoBiT-IP3 luminescent biosensor to detect increases in IP3 in live cells.
View Article and Find Full Text PDFMethods Mol Biol
October 2024
Metabolism and Systems Science, University of Birmingham, Birmingham, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!