Introduction: The transcription factor activating enhancer binding protein 2 epsilon (AP-2ε) was recently shown to be expressed during chondrogenesis as well as in articular chondrocytes of humans and mice. Furthermore, expression of AP-2ε was found to be upregulated in affected cartilage of patients with osteoarthritis (OA). Despite these findings, adult mice deficient for AP-2ε (Tfap2e(-/-)) do not exhibit an obviously abnormal cartilaginous phenotype. We therefore analyzed embryogenesis of Tfap2e(-/-) mice to elucidate potential transient abnormalities that provide information on the influence of AP-2ε on skeletal development. In a second part, we aimed to define potential influences of AP-2ε on articular cartilage function and gene expression, as well as on OA progression, in adult mice.

Methods: Murine embryonic development was accessed via in situ hybridization, measurement of skeletal parameters and micromass differentiation of mesenchymal cells. To reveal discrepancies in articular cartilage of adult wild-type (WT) and Tfap2e(-/-) mice, light and electron microscopy, in vitro culture of cartilage explants, and quantification of gene expression via real-time PCR were performed. OA was induced via surgical destabilization of the medial meniscus in both genotypes, and disease progression was monitored on histological and molecular levels.

Results: Only minor differences between WT and embryos deficient for AP-2ε were observed, suggesting that redundancy mechanisms effectively compensate for the loss of AP-2ε during skeletal development. Surprisingly, though, we found matrix metalloproteinase 13 (Mmp13), a major mediator of cartilage destruction, to be significantly upregulated in articular cartilage of adult Tfap2e(-/-) mice. This finding was further confirmed by increased Mmp13 activity and extracellular matrix degradation in Tfap2e(-/-) cartilage explants. OA progression was significantly enhanced in the Tfap2e(-/-) mice, which provided evidence for in vivo relevance. This finding is most likely attributable to the increased basal Mmp13 expression level in Tfap2e(-/-) articular chondrocytes that results in a significantly higher total Mmp13 expression rate during OA as compared with the WT.

Conclusions: We reveal a novel role of AP-2ε in the regulation of gene expression in articular chondrocytes, as well as in OA development, through modulation of Mmp13 expression and activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4453098PMC
http://dx.doi.org/10.1186/s13075-015-0648-8DOI Listing

Publication Analysis

Top Keywords

tfap2e-/- mice
16
articular chondrocytes
12
articular cartilage
12
gene expression
12
mmp13 expression
12
activating enhancer
8
enhancer binding
8
binding protein
8
protein epsilon
8
matrix metalloproteinase
8

Similar Publications

Malignant melanoma, the most aggressive form of skin cancer, is often incurable once metastatic dissemination of cancer cells to distant organs has occurred. We investigated the role of Transcription Factor Activating Enhancer-Binding Protein 2ε (AP2ε) in the progression of metastatic melanoma. Here, we observed that AP2ε is a potent activator of metastasis and newly revealed AP2ε to be an important player in melanoma plasticity.

View Article and Find Full Text PDF

Neuronal identity dictates the position in an epithelium, and the ability to detect, process, and transmit specific signals to specified targets. Transcription factors (TFs) determine cellular identity via direct modulation of genetic transcription and recruiting chromatin modifiers. However, our understanding of the mechanisms that define neuronal identity and their magnitude remain a critical barrier to elucidate the etiology of congenital and neurodegenerative disorders.

View Article and Find Full Text PDF

The identity of individual neuronal cell types is defined and maintained by the expression of specific combinations of transcriptional regulators that control cell type-specific genetic programs. The epithelium of the vomeronasal organ of mice contains two major types of vomeronasal sensory neurons (VSNs): 1) the apical VSNs which express vomeronasal 1 receptors (V1r) and the G-protein subunit Gαi2 and; 2) the basal VSNs which express vomeronasal 2 receptors (V2r) and the G-protein subunit Gαo. Both cell types originate from a common pool of progenitors and eventually acquire apical or basal identity through largely unknown mechanisms.

View Article and Find Full Text PDF

Hypermethylation of the transcription factor AP-2 epsilon (TFAP2E) gene affects 5-fluorouridine (5-FU) resistance in gastric cancer (GC) patients. The epigenetic inhibitor 5-Aza-2'-deoxycytidine (DAC), which reverses DNA methylation by targeting DNA methyltransferases (DNMTs), has potential to sensitize GC to 5-FU. Nevertheless, DNA demethylation only DAC transiently occurs since DAC is unstable in aqueous solutions, which limits its potential.

View Article and Find Full Text PDF

Introduction: The transcription factor activating enhancer binding protein 2 epsilon (AP-2ε) was recently shown to be expressed during chondrogenesis as well as in articular chondrocytes of humans and mice. Furthermore, expression of AP-2ε was found to be upregulated in affected cartilage of patients with osteoarthritis (OA). Despite these findings, adult mice deficient for AP-2ε (Tfap2e(-/-)) do not exhibit an obviously abnormal cartilaginous phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!