https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=25962911&retmode=xml&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=dna+methylation&datetype=edat&usehistory=y&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&WebEnv=MCID_679579d16eecb31b580e1410&query_key=1&retmode=xml&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908 Role of DNA Methylation on the Expression of the Anthracycline Metabolizing Enzyme AKR7A2 in Human Heart. | LitMetric

The intracardiac synthesis of anthracycline alcohol metabolites by aldo-keto reductases (AKRs) contributes to the pathogenesis of anthracycline-related cardiotoxicity. AKR7A2 is the most abundant anthracycline reductase in hearts from donors with and without Down syndrome (DS), and its expression varies between individuals (≈tenfold). We investigated whether DNA methylation impacts AKR7A2 expression in hearts from donors with (n = 11) and without DS (n = 30). Linear models were used to test for associations between methylation status and cardiac AKR7A2 expression. In hearts from donors without DS, DNA methylation status at CpG site -865 correlated with AKR7A2 mRNA (Pearson's regression coefficient, r = -0.4051, P = 0.0264) and AKR7A2 protein expression (r = -0.5818, P = 0.0071). In heart tissue from donors with DS, DNA methylation status at CpG site -232 correlated with AKR7A2 protein expression (r = 0.8659, P = 0.0025). Multiple linear regression modeling revealed that methylation at several CpG sites is associated with the synthesis of cardiotoxic daunorubicinol. AKR7A2 methylation status in lymphoblastoid cell lines from donors with and without DS was examined to explore potential parallelisms between cardiac tissue and lymphoid cells. These results suggest that DNA methylation impacts AKR7A2 expression and the synthesis of cardiotoxic daunorubicinol.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4643426PMC
http://dx.doi.org/10.1007/s12012-015-9327-xDOI Listing

Publication Analysis

Top Keywords

dna methylation
20
methylation status
16
hearts donors
12
akr7a2 expression
12
akr7a2
9
methylation
8
methylation impacts
8
impacts akr7a2
8
expression hearts
8
donors dna
8

Similar Publications

The Impact of Modifiable Risk Factors on the Endothelial Cell Methylome and Cardiovascular Disease Development.

Front Biosci (Landmark Ed)

January 2025

School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.

Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.

View Article and Find Full Text PDF

Background/objectives: The DNA methylation of neonatal cord blood can be used to accurately estimate gestational age. This is known as epigenetic gestational age. The greater the difference between epigenetic and chronological gestational age, the greater the association with an inappropriate perinatal fetal environment and development.

View Article and Find Full Text PDF

A Guinea Pig Model of Pediatric Metabolic Dysfunction-Associated Steatohepatitis: Poor Vitamin C Status May Advance Disease.

Nutrients

January 2025

Section of Preclinical Disease Biology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.

Children and teenagers display a distinct metabolic dysfunction-associated steatohepatitis (MASH) phenotype, yet studies of childhood MASH are scarce and validated animal models lacking, limiting the development of treatments. Poor vitamin C (VitC) status may affect MASH progression and often co-occurs with high-fat diets and related metabolic imbalances. As a regulator of DNA methylation, poor VitC status may further contribute to MASH by regulating gene expression This study investigated guinea pigs-a species that, like humans, depends on vitC in the diet-as a model of pediatric MASH, examining the effects of poor VitC status on MASH hallmarks and global DNA methylation levels.

View Article and Find Full Text PDF

DNA methylation has been widely studied with the goal of correlating the genome profiles of various diseases with epigenetic mechanisms. Multiple approaches have been developed that employ extensive steps, such as bisulfite treatments, polymerase chain reactions (PCR), restriction digestion, sequencing, mass analysis, etc., to identify DNA methylation.

View Article and Find Full Text PDF

Serum cystatin C is a well-established marker of renal function and a valuable predictor of health risks and mortality. DNA methylation-predicted cystatin C (DNAmCystatinC), an advanced epigenetic biomarker, serves as a proxy for serum cystatin C levels. However, the relationships between serum cystatin C, DNAmCystatinC, renal function, and mortality outcomes have not been previously examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!