Background: Chronic methamphetamine intake has been shown to induce a neuroinflammatory state leading to significant changes in brain functioning including behavioral changes. These changes can persist for years after drug use is discontinued and likely contribute to the risk of relapse. A better understanding of inflammation responses associated with methamphetamine intake may help in designing novel and more efficacious treatment strategies.
Methods: Rats were trained to self-administer methamphetamine or saline on a variable ratio 3 schedule of reinforcement (25 days). This training was followed by 12 days of extinction (i.e., methamphetamine unavailable) during which rats received daily post-session administration of ibudilast (AV411; 2.5 or 7.5mg/kg) or saline. Following extinction, synaptosomes were isolated from the prefrontal cortex (PFC) and the differential pattern of synaptic proteins was assessed using mass spectrometry based proteomics.
Results: Treatment with ibudilast allowed for deeper extinction of active lever pressing. Quantitative mass spectrometry based proteomics on the PFC identified one potential hit; the synaptic signaling protein phosphatidylethanolamine-binding protein 1 (PEBP1). While methamphetamine intake was associated with reduced PEBP1 protein levels, treatment with ibudilast reversed this effect. Furthermore, decreased PEBP1 expression was correlated with subsequent activation of Raf-1, MEK, and ERK signaling components of the mitogen-activated protein kinase cascade (MAPK). Raf-1, MEK, and ERK expression levels were also attenuated by ibudilast treatment.
Conclusion: PEBP1, given its synaptic localization and its role as a signaling molecule acting via the ERK/MAPK pathway, could be a potential therapeutic target mediating drug-seeking behaviors associated with neuroinflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.drugalcdep.2015.04.012 | DOI Listing |
Pharmacol Biochem Behav
January 2025
Department of Psychology, Fo Guang University, Yilan County 26247, Taiwan. Electronic address:
The role of the nucleus accumbens (NAc) core in determining the valence of innately rewarding saccharin solution intake, methamphetamine (MAMPH)-induced conditioned taste aversion (CTA), and conditioned place preference (CPP) reward remains unclear. The present study utilized the "pre- and post-association" experimental paradigm (2010) to test whether the rewarding and aversive properties of MAMPH can be modulated by an N-methyl-D-aspartic acid (NMDA) lesion in the NAc core. Moreover, it tested how an NAc core NMDA lesion affected the innate reward of saccharin solution intake.
View Article and Find Full Text PDFNeurosci Biobehav Rev
October 2023
Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224. Electronic address:
Methamphetamine use disorder (MUD) is a neuropsychiatric disorder characterized by binge drug taking episodes, intervals of abstinence, and relapses to drug use even during treatment. MUD has been modeled in rodents and investigators are attempting to identify its molecular bases. Preclinical experiments have shown that different schedules of methamphetamine self-administration can cause diverse transcriptional changes in the dorsal striatum of Sprague-Dawley rats.
View Article and Find Full Text PDFCureus
August 2024
Pathology, Cook County Medical Examiner's Office, Chicago, USA.
Eur J Neurosci
October 2024
Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
Combined use of fentanyl and methamphetamine (FENT + METH) has increased in recent years and has been documented in a growing number overdose deaths each year. The impact of FENT + METH on behavior and neurobiology is not well understood. In this study, male and female Long Evans rats were tested on a limited access, fixed ratio 1 self-administration schedule for increasing doses (1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!