Background: Next-generation sequencing technologies provide new opportunities to identify the genetic components responsible for trait variation. However, in species with large polyploid genomes, such as bread wheat, the ability to rapidly identify genes underlying quantitative trait loci (QTL) remains non-trivial. To overcome this, we introduce a novel pipeline that analyses, by RNA-sequencing, multiple near-isogenic lines segregating for a targeted QTL.
Results: We use this approach to characterize a major and widely utilized seed dormancy QTL located on chromosome 4AL. It exploits the power and mapping resolution afforded by large multi-parent mapping populations, whilst reducing complexity by using multi-allelic contrasts at the targeted QTL region. Our approach identifies two adjacent candidate genes within the QTL region belonging to the ABA-induced Wheat Plasma Membrane 19 family. One of them, PM19-A1, is highly expressed during grain maturation in dormant genotypes. The second, PM19-A2, shows changes in sequence causing several amino acid alterations between dormant and non-dormant genotypes. We confirm that PM19 genes are positive regulators of seed dormancy.
Conclusions: The efficient identification of these strong candidates demonstrates the utility of our transcriptomic pipeline for rapid QTL to gene mapping. By using this approach we are able to provide a comprehensive genetic analysis of the major source of grain dormancy in wheat. Further analysis across a diverse panel of bread and durum wheats indicates that this important dormancy QTL predates hexaploid wheat. The use of these genes by wheat breeders could assist in the elimination of pre-harvest sprouting in wheat.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4443510 | PMC |
http://dx.doi.org/10.1186/s13059-015-0665-6 | DOI Listing |
Plants (Basel)
December 2024
Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland.
In this study, BC1F3:4 generation plants derived from the hybrid crosses of Rio Blanco × Nevzatbey, Rio Blanco × Adana99, and Rio Blanco × line 127 were used as experimental material. These hybrids incorporated QTLs associated with pre-harvest sprouting (PHS) resistance through molecular techniques. Key agronomic traits, including plant height, spike length, the number of grains per spike, grain weight, and physiological maturity, were evaluated in both greenhouse and growth room settings under accelerated growth (speed breeding) conditions.
View Article and Find Full Text PDFDNA Res
December 2024
Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
Bud dormancy is a vital physiological process in woody perennials, facilitating their adaptation to seasonal environmental changes. Satisfying genotype-specific chilling requirements (CR) and heat requirements (HR) through exposure to specific chilling and warm temperatures is essential for dormancy release and the subsequent resumption of growth. The genetic mechanisms regulating bud dormancy traits in Prunus mume remain unclear.
View Article and Find Full Text PDFPlant Biotechnol J
December 2024
National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
BMC Plant Biol
November 2024
School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA.
Background: Early seed germination in crops can confer a competitive advantage against weeds and reduce the time to maturation and harvest. WRKY transcription factors regulate many aspects of plant development including seed dormancy and germination. Both positive and negative regulators of seed germination have been reported in many plants such as rice and Arabidopsis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2024
Université Paris-Saclay, CNRS, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université d'Evry, Institute of Plant Sciences Paris-Saclay, Orsay 91405, France.
Seed dormancy corresponds to a reversible blockage of germination. Primary dormancy is established during seed maturation, while secondary dormancy is set up on the dispersed seed, following an exposure to unfavorable factors. Both dormancies are relieved in response to environmental factors, such as light, nitrate, and coldness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!