Image scanning microscopy (ISM) coupled with pixel reassignment offers a resolution improvement of √2 over standard widefield imaging. By scanning point-wise across the specimen and capturing an image of the fluorescent signal generated at each scan position, additional information about specimen structure is recorded and the highest accessible spatial frequency is doubled. Pixel reassignment can be achieved optically in real time or computationally a posteriori and is frequently combined with the use of a physical or digital pinhole to reject out of focus light. Here, we simulate an ISM dataset using a test image and apply standard and non-standard processing methods to address problems typically encountered in computational pixel reassignment and pinholing. We demonstrate that the predicted improvement in resolution is achieved by applying standard pixel reassignment to a simulated dataset and explore the effect of realistic displacements between the reference and true excitation positions. By identifying the position of the detected fluorescence maximum using localisation software and centring the digital pinhole on this co-ordinate before scaling around translated excitation positions, we can recover signal that would otherwise be degraded by the use of a pinhole aligned to an inaccurate excitation reference. This strategy is demonstrated using experimental data from a multiphoton ISM instrument. Finally we investigate the effect that imaging through tissue has on the positions of excitation foci at depth and observe a global scaling with respect to the applied reference grid. Using simulated and experimental data we explore the impact of a globally scaled reference on the ISM image and, by pinholing around the detected maxima, recover the signal across the whole field of view.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymeth.2015.05.002 | DOI Listing |
Nat Commun
November 2024
Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel.
We present super-resolved coherent anti-Stokes Raman scattering (CARS) microscopy by implementing phase-resolved image scanning microscopy, achieving up to two-fold resolution increase as compared with a conventional CARS microscope. Phase-sensitivity is required for the standard pixel-reassignment procedure since the scattered field is coherent, thus the point-spread function is well-defined only for the field amplitude. We resolve the complex field by a simple add-on to the CARS setup enabling inline interferometry.
View Article and Find Full Text PDFAdv Photonics
October 2023
Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States.
Improving the spatial resolution of a fluorescence microscope has been an ongoing challenge in the imaging community. To address this challenge, a variety of approaches have been taken, ranging from instrumentation development to image postprocessing. An example of the latter is deconvolution, where images are numerically deblurred based on a knowledge of the microscope point spread function.
View Article and Find Full Text PDFNat Commun
May 2024
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
Fluorescence microscopy has undergone rapid advancements, offering unprecedented visualization of biological events and shedding light on the intricate mechanisms governing living organisms. However, the exploration of rapid biological dynamics still poses a significant challenge due to the limitations of current digital camera architectures and the inherent compromise between imaging speed and other capabilities. Here, we introduce sHAPR, a high-speed acquisition technique that leverages the operating principles of sCMOS cameras to capture fast cellular and subcellular processes.
View Article and Find Full Text PDFSuper-resolution microscopy has revolutionized the field of biophotonics by revealing detailed 3D biological structures. Nonetheless, the technique is still largely limited by the low throughput and hampered by increased background signals for dense or thick biological specimens. In this paper, we present a pixel-reassigned continuous line-scanning microscope for large-scale high-speed 3D super-resolution imaging, which achieves an imaging resolution of 0.
View Article and Find Full Text PDFbioRxiv
September 2023
Department of Biomedical Engineering, Boston University, MA 02215.
Improving the spatial resolution of a fluorescence microscope has been an ongoing challenge in the imaging community. To address this challenge, a variety of approaches have been taken, ranging from instrumentation development to image post-processing. An example of the latter is deconvolution, where images are numerically deblurred based on a knowledge of the microscope point spread function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!