In the present study, a glucosamine-induced model of insulin-resistant skeletal muscle cells was established in order to investigate the effect of inhibition of phosphatase and tensin homolog (PTEN)/5'-adenosine monophosphate-activated protein kinase (AMPK) on these cells. The glucosamine-induced insulin-resistant skeletal muscle cells were produced and the rate of glucose uptake was measured using the glucose oxidase-peroxidase method. The expression levels of PTEN and phosphorylated PTEN (p-PTEN) were assessed using western blotting. Glucose transporter 4 (GLUT4) translocation was detected by immunofluorescence. Cell apoptosis was evaluated using flow cytometry. Following insulin stimulation, the rate of glucose uptake was significantly reduced in the cells with glucosamine-induced insulin-resistance in comparison with those in the control group. The expression and translocation of GLUT4 were reduced in the insulin-resistant muscle cells. By contrast, the expression of PTEN and p-PTEN as well as apoptosis were significantly increased. Following treatment with bisperoxopicolinatooxovanadate (BPV) or metformin in the insulin-resistant skeletal muscle cells, there was an increase in the rate of glucose uptake, an increase in GLUT4 expression and its translocation, a reduction in the expression of PTEN and p-PTEN, and a decrease in cell apoptosis compared with untreated insulin-resistant cells. Glucosamine may be used to produce an effective model of insulin-resistant skeletal muscle cells. Cells with glucosamine-induced insulin-resistance exhibited a reduced expression of GLUT4 and dysfunction in GLUT4 translocation, as well as increased activation of PTEN and increased cell apoptosis. Inhibition of PTEN or its upstream regulator, AMPK, protects glucosamine-induced insulin-resistant skeletal muscle cells from apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/mmr.2015.3771 | DOI Listing |
Commun Biol
January 2025
Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
Single cell studies have transformed our understanding of cellular heterogeneity in disease but the need for fresh starting material can be an obstacle, especially in the context of international multicenter studies and archived tissue. We developed a protocol to obtain high-quality cells and nuclei from dissected human skeletal muscle archived in the preservative Allprotect® Tissue Reagent. After fluorescent imaging microscopy confirmed intact nuclei, we performed four protocol variations that compared sequencing metrics between cells and nuclei enriched by either filtering or flow cytometry sorting.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China.
Mutations in the ANXA11 gene, encoding an RNA-binding protein, have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), but the underlying in vivo mechanisms remain unclear. This study examines the clinical features of ALS patients harboring the ANXA11 hotspot mutation p.P36R, characterized by late-onset motor neuron disease and occasional multi-system involvement.
View Article and Find Full Text PDFNat Commun
January 2025
CIRI, Centre International de Recherche en Infectiologie Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.
Prime Editing can rewrite genes in living cells by allowing point mutations, deletions, or insertion of small DNA sequences with high precision. However, its safe and efficient delivery into human stem cells remains a technical challenge. In this report, we engineer Nanoscribes, virus-like particles that encapsidate ribonucleoprotein complexes of the Prime Editing system and allow their delivery into recipient cells.
View Article and Find Full Text PDFCell Calcium
December 2024
Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, NV, 89557, USA. Electronic address:
Interstitial cells of Cajal in the plane of the myenteric plexus (ICC-MY) serve as electrical pacemakers in the stomach and small intestine. A similar population of cells is found in the colon, but these cells do not appear to generate regular slow wave potentials, as characteristic in more proximal gut regions. Ca handling mechanisms in ICC-MY of the mouse proximal colon were studied using confocal imaging of muscles from animals expressing GCaMP6f exclusively in ICC.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
College of Life Science, Henan Normal University, Xinxiang 453007, China. Electronic address:
The widespread application of quantum dots (QDs) in recent years has raised concerns about potential environmental and human health risks. Although the toxicity of cadmium telluride quantum dots (CdTe QDs) has been partially studied, their effects on stem cells, tissue regeneration, neurodevelopment, and neurobehavioral toxicity remain unclear. This study aimed to investigate the combined toxic effects and mechanisms of CdTe QDs on planarians at the individual, tissue, cellular, and molecular levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!