Sodium salicylate suppresses GABAergic inhibitory activity in neurons of rodent dorsal raphe nucleus.

PLoS One

CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China; Auditory Research Laboratory, University of Science and Technology of China, Hefei, 230027, China.

Published: February 2016

Sodium salicylate (NaSal), a tinnitus inducing agent, can activate serotonergic (5-HTergic) neurons in the dorsal raphe nucleus (DRN) and can increase serotonin (5-HT) level in the inferior colliculus and the auditory cortex in rodents. To explore the underlying neural mechanisms, we first examined effects of NaSal on neuronal intrinsic properties and the inhibitory synaptic transmissions in DRN slices of rats by using whole-cell patch-clamp technique. We found that NaSal hyperpolarized the resting membrane potential, decreased the input resistance, and suppressed spontaneous and current-evoked firing in GABAergic neurons, but not in 5-HTergic neurons. In addition, NaSal reduced GABAergic spontaneous and miniature inhibitory postsynaptic currents in 5-HTergic neurons. We next examined whether the observed depression of GABAergic activity would cause an increase in the excitability of 5-HTergic neurons using optogenetic technique in DRN slices of the transgenic mouse with channelrhodopsin-2 expressed in GABAergic neurons. When the GABAergic inhibition was enhanced by optical stimulation to GABAergic neurons in mouse DRN, NaSal significantly depolarized the resting membrane potential, increased the input resistance and increased current-evoked firing of 5-HTergic neurons. However, NaSal would fail to increase the excitability of 5-HTergic neurons when the GABAergic synaptic transmission was blocked by picrotoxin, a GABA receptor antagonist. Our results indicate that NaSal suppresses the GABAergic activities to raise the excitability of local 5-HTergic neural circuits in the DRN, which may contribute to the elevated 5-HT level by NaSal in the brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427486PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126956PLOS

Publication Analysis

Top Keywords

5-htergic neurons
24
gabaergic neurons
12
neurons
10
gabaergic
9
sodium salicylate
8
suppresses gabaergic
8
dorsal raphe
8
raphe nucleus
8
nasal
8
5-ht level
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!