Five-Year Survival of Children With Chronic Critical Illness in Australia and New Zealand.

Crit Care Med

1Department of Paediatric Intensive Care, Royal Children's Hospital, Melbourne, VIC, Australia. 2Murdoch Children's Research Institute, Melbourne, VIC, Australia. 3Australia and New Zealand Paediatric Intensive Care Registry, Brisbane, QLD, Australia. 4Paediatric Intensive Care Unit, Lady Cilento Children's Hospital, Children's Health Queensland, Brisbane, QLD, Australia. 5Paediatric Intensive Care Unit, Princess Margaret Hospital, Perth, WA, Australia. 6Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia. 7Paediatric Intensive Care Unit, Children's Hospital at Westmead, Sydney, NSW, Australia. 8Paediatric Intensive Care Unit, Women's and Children's Hospital, Adelaide, SA, Australia. 9Pediatric Intensive Care Unit, Starship Children's Hospital, Auckland, New Zealand. 10Department of Pediatrics, Inselspital, University of Bern, Bern, Switzerland. 11Paediatric Critical Care Research Group, Mater Research Institute, University of Queensland, Brisbane, QLD, Australia. 12Paediatric Intensive Care Unit, Sydney Children's Hospital, Sydney, NSW, Australia.

Published: September 2015

Objective: Outcomes for children with chronic critical illness are not defined. We examined the long-term survival of these children in Australia and New Zealand.

Design: All cases of PICU chronic critical illness with length of stay more than 28 days and age 16 years old or younger in Australia and New Zealand from 2000 to 2011 were studied. Five-year survival was analyzed using Kaplan-Meir estimates, and risk factors for mortality evaluated using Cox regression.

Setting: All PICUs in Australia and New Zealand.

Patients: Nine hundred twenty-four children with chronic critical illness.

Intervention: None.

Measurements And Main Results: Nine hundred twenty-four children were admitted to PICU for longer than 28 days on 1,056 occasions, accounting for 1.3% of total admissions and 23.5% of bed days. Survival was known for 883 of 924 patients (95.5%), with a median follow-up of 3.4 years. The proportion with primary cardiac diagnosis increased from 27% in 2000-2001 to 41% in 2010-2011. Survival was 81.4% (95% CI, 78.6-83.9) to PICU discharge, 70% (95% CI, 66.7-72.8) at 1 year, and 65.5% (95% CI, 62.1-68.6) at 5 years. Five-year survival was 64% (95% CI, 58.7-68.6) for children admitted in 2000-2005 and 66% (95% CI, 61.7-70) if admitted in 2006-2011 (log-rank test, p = 0.37). After adjusting for admission severity of illness using the Paediatric Index of Mortality 2 score, predictors for 5-year mortality included bone marrow transplant (hazard ratio, 3.66; 95% CI, 2.26-5.92) and single-ventricle physiology (hazard ratio, 1.98; 95% CI, 1.37-2.87). Five-year survival for single-ventricle physiology was 47.2% (95% CI, 34.3-59.1) and for bone marrow transplantation 22.8% (95% CI, 8.7-40.8).

Conclusions: Two thirds of children with chronic critical illness survive for at-least 5 years, but there was no improvement between 2000 and 2011. Cardiac disease constitutes an increasing proportion of pediatric chronic critical illness. Bone marrow transplant recipients and single-ventricle physiology have the poorest outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1097/CCM.0000000000001076DOI Listing

Publication Analysis

Top Keywords

chronic critical
24
critical illness
20
five-year survival
16
children chronic
16
bone marrow
12
single-ventricle physiology
12
95%
9
survival children
8
australia zealand
8
2000 2011
8

Similar Publications

MRI-assessed Dynamic Hyperinflation Induced by Tachypnea in Chronic Obstructive Pulmonary Disease: The SPIROMICS-HF Study.

Radiol Cardiothorac Imaging

February 2025

From the Department of Biomedical Engineering (X.Z.) and Columbia Magnetic Resonance Research Center (CMRRC) (W.S.), Columbia University, New York, NY; Departments of Medicine (C.B.C., J.P.F.) and Radiology (J.P.F.), University of California at Los Angeles, Los Angeles, Calif; Department of Radiology, Weill Cornell Medicine, New York, NY (M.R.P.); Department of Radiology (M.R.P., S.M.D., S.J.), Department of Medicine (M.C.B., R.G.B.), Department of Epidemiology (R.G.B.), Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics (W.S.), and Institute of Human Nutrition (W.S.), Columbia University Irving Medical Center, 632 W 168th St, PH-17, New York, NY 10032; Department of Radiology (B.A.V., J.A.C.L.) and Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (N.N.H.), Johns Hopkins University, Baltimore, Md; Department of Radiology, University of Michigan, Ann Arbor, Mich (P.P.A.); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis (D.A.B.); Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC (D.C.); Departments of Radiology, Medicine, and the Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa (E.A.H.); Sections on Cardiology and Geriatrics, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC (D.W.K.); Division of Pulmonary, Critical Care, Sleep, and Allergy (J.A.K.) and Department of Radiology, College of Medicine (M.G.M.), University of Illinois at Chicago, Chicago, Ill; Department of Radiology and Biomedical Imaging (Y.J.L., J.L.), Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, School of Medicine (P.G.W.), and Cardiovascular Research Institute (P.G.W.), University of California at San Francisco, San Francisco, Calif; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Wake Forest University, Winston-Salem, NC (J.O., S.P.P.); Division of Pulmonary Medicine, Department of Medicine, Mayo Clinic, Phoenix, Ariz (V.E.O.); Department of Medicine, University of Utah, Salt Lake City, Utah (R.P.); Department of Radiology, Mayo Clinic, Rochester, Minn (J.D.S.); Department of Radiology, Hannover Medical School, Hannover, Germany (J.V.C.); and BREATH, Member of the German Center for Lung Research (DZL), Hannover, Germany (J.V.C.).

Purpose To assess the repeatability of real-time cine pulmonary MRI measures of metronome-paced tachypnea (MPT)-induced dynamic hyperinflation and its relationship with chronic obstructive pulmonary disease (COPD) severity. Materials and Methods SubPopulations and InteRmediate Outcome Measures In COPD Study (SPIROMICS) (ClinicalTrials.gov identifier no.

View Article and Find Full Text PDF

Novel Sarcoidosis Epitope Augments MHCII, CD80/CD86 Expression, Promotes B-Cell Differentiation and IgG Production.

Am J Respir Cell Mol Biol

January 2025

Wayne State University, Division of Pulmonary, Critical Care and Sleep Medicine, Detroit, Michigan, United States;

Numerous chronic human disorders are associated with immune activation by obscure antigen(s). We identified a novel sarcoidosis-epitope (ChainA) by immunoscreening of a novel T7 phage library and confirmed an abundance of ChainA IgG-antibody in sarcoidosis. We tested whether ChainA epitope elicits immune responses through B-cell activation, plasma cell differentiation and antibody production.

View Article and Find Full Text PDF

Background: Population aging has led to a surge in elderly care needs worldwide. Bone aging, skeletal muscle degeneration, and osteoporosis pose critical health challenges for the elderly. The process of bone and skeletal muscle aging not only impacts the functional abilities but also increases fragility fracture risk.

View Article and Find Full Text PDF

Background And Objective: Non-invasive neuromodulation techniques (NIN), such as transcranial Direct Current Stimulation (tDCS) and repetitive Transcranial Magnetic Stimulation (rTMS), have been extensively researched for their potential to alleviate pain by reversing neuroplastic changes associated with neuropathic pain (NP), a prevalent and complex condition. However, treating NP remains challenging due to the numerous variables involved, such as different techniques, dosages and aetiologies. It is necessary to provide insights for clinicians and public healthcare managers to support clinical decision-making.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!