Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A variety of different gold and silver nanostructures have been proposed over the years as high sensitivity surface-enhanced Raman scattering (SERS) sensors. However, efficient use of SERS has been hindered by the difficulty of realizing SERS substrates that provide reproducible SERS response over the whole active area. Here, we show that atomic layer deposition (ALD) grown iridium can be used to produce highly reliable SERS substrates. The substrates are based on a periodic array of high aspect-ratio iridium coated nanopillars that feature efficient and symmetrically distributed hot spots within the interpillar gaps (gap width<10 nm). We show that the enhancement with the iridium based nanostructures is of significant magnitude and it equals the enhancement of silver based reference substrates. Most notably, we demonstrate that the ordered and well-defined plasmonic nanopillars offer a measurement-to-measurement variability of 5%, which paves the way for truly quantitative SERS measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5b02206 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!