Cell viability is only possible due to a dynamic range of essential nucleic acid-protein complex formation. DNA replication and repair, gene expression, transcription and protein synthesis are well-known processes mediated by nucleic acids (DNA and RNA) - protein interactions. Novel nucleic acid- protein complexes have been identified in the past few years aided by the development of numerous new techniques such as RNA capture or Tandem RNA Affinity Purification (TRAP). However, the biophysical and biochemical details of these interactions are mostly unknown. Here, we present three techniques (Electrophoretic Mobility Shift Assays, Microscale Thermophoresis and Surface Plasmon Resonance) that are commonly used to quantify and characterize DNA-protein and RNA-protein interactions and discuss their main advantages and limitations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1389203716666150505230806 | DOI Listing |
Front Plant Sci
November 2024
Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, China.
Introduction: Heavy ions of the galactic cosmic radiation dominate the radiation risks and biological effects for plants under spaceflight conditions. However, the biological effects and sensitive genes caused by heavy ions with different linear energy transfer (LET) values have not been thoroughly studied.
Methods: To comprehensively analyze the biological effects of heavy ions with different LET values on rice under spaceflight conditions, we utilized the Shijian-10 recoverable satellite (SJ-10) to transport the dehydrated rice seeds on a 12.
Curr Opin Struct Biol
December 2024
Department of Biochemistry and Molecular Biophysics, Columbia University, NY 10032, USA. Electronic address:
The energy cost accompanying changes in the structures of nucleic acids when they bind partner molecules is a significant but underappreciated thermodynamic contribution to binding affinity and specificity. This review highlights recent advances in measuring conformational penalties and determining their contribution to the recognition, folding, and regulatory activities of nucleic acids. Notable progress includes methods for measuring and structurally characterizing lowly populated conformational states, obtaining ensemble information in high throughput, for large macromolecular assemblies, and in complex cellular environments.
View Article and Find Full Text PDFNat Methods
November 2024
Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany.
The intricate interplay between DNA and proteins is key for biological functions such as DNA replication, transcription and repair. Dynamic nanoscale observations of DNA structural features are necessary for understanding these interactions. Here we introduce graphene energy transfer with vertical nucleic acids (GETvNA), a method to investigate DNA-protein interactions that exploits the vertical orientation adopted by double-stranded DNA on graphene.
View Article and Find Full Text PDFHortic Res
April 2024
Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA.
Long-distance transport or systemic silencing effects of exogenous biologically active RNA molecules in higher plants have not been reported. Here, we report that cationized bovine serum albumin (cBSA) avidly binds double-stranded beta-glucuronidase RNA (dsGUS RNA) to form nucleic acid-protein nanocomplexes. In our experiments with tobacco and poplar plants, we have successfully demonstrated systemic gene silencing effects of cBSA/dsGUS RNA nanocomplexes when we locally applied the nanocomplexes from the basal ends of leaf petioles or shoots.
View Article and Find Full Text PDFMicrob Pathog
November 2024
Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran. Electronic address:
By disturbing the prooxidant-antioxidant balance in the cell, a condition called oxidative stress is created, causing severe damage to the nucleic acid, protein, and lipid of the host cell, and as a result, endangers the viability of the host cell. A relationship between oxidative stress and several different diseases such as cardiovascular diseases, cancer, and obesity has been reported. Therefore, maintaining this prooxidant-antioxidant balance is vital for the cell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!