In this study we investigated the role of astragaloside IV (AS-IV), one of the major active constituents purified from the Chinese medicinal herb Astragalus membranaceus, in LPS-induced acute inflammatory responses in mice in vivo and examined possible underlying mechanisms. Mice were assigned to four groups: vehicle-treated control animals; AS-IV-treated animals (10 mg/kg b.w. AS-IV daily i.p. injection for 6 days); LPS-treated animals; and AS-IV plus LPS-treated animals. We found that AS-IV treatment significantly inhibited LPS-induced increases in serum levels of MCP-1 and TNF by 82% and 49%, respectively. AS-IV also inhibited LPS-induced upregulation of inflammatory gene expression in different organs. Lung mRNA levels of cellular adhesion molecules, MCP-1, TNFα, IL-6, and TLR4 were significantly attenuated, and lung neutrophil infiltration and activation were strongly inhibited, as reflected by decreased myeloperoxidase content, when the mice were pretreated with AS-IV. Similar results were observed in heart, aorta, kidney, and liver. Furthermore, AS-IV significantly suppressed LPS-induced NF-κB and AP-1 DNA-binding activities in lung and heart. In conclusion, our data provide new in vivo evidence that AS-IV effectively inhibits LPS-induced acute inflammatory responses by modulating NF-κB and AP-1 signaling pathways. Our results suggest that AS-IV may be useful for the prevention or treatment of inflammatory diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4415625 | PMC |
http://dx.doi.org/10.1155/2015/274314 | DOI Listing |
CNS Neurosci Ther
January 2025
Qingshan Lake Science and Technology Innovation Center, Hangzhou Medical College, Hangzhou, China.
Background: Ischemic stroke is a prevalent and life-threatening cerebrovascular disease that is challenging to treat and associated with a poor prognosis. Astragaloside IV (AS-IV), a primary bioactive component of Astragali radix, has demonstrated neuroprotective benefits in previous studies. This study aimed to explore the mechanisms through which AS-IV may treat cerebral ischemia-reperfusion injury (CIRI).
View Article and Find Full Text PDFNeuroscience
January 2025
Department of Neurology, Binzhou Medical University Hospital, 256603 Binzhou, Shandong, PR China. Electronic address:
Astragaloside Ⅳ (AS-Ⅳ) improved the motor behavior of PD mouse but the alteration of imaging in the PD mice brain was unclear. PD models were established by unilateral injection of ROT into the substantia nigra pars compacta (SNc) of mice. AS-Ⅳ (4 mg/kg) was intraperitoneally injected once a day for 14 days.
View Article and Find Full Text PDFExp Neurol
December 2024
School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China. Electronic address:
Various factors and mechanisms, including radiation, initiate cellular senescence and are concurrent with the progression of various neurodegenerative diseases. Radiation-induced chromosomal aberrations and DNA integrity damage impact the processes of cellular growth, maturation, and aging. Astragaloside IV (AS-IV) has been documented to display significant neuroprotective effects on inflammation, oxidative stress, and cellular apoptosis; however, the precise neuroprotective mechanism of AS-IV against neuronal aging remains unclear.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China. Electronic address:
Background: Atherosclerosis is a chronic inflammatory disease mainly characterized by the activation of endothelial cells and recruitment of macrophages, leading to plaque formation. Astragaloside IV (AS-IV), a natural saponin derived from Astragalus mongholicus Bunge, has been shown to confer protective effects against cardiovascular diseases.
Purpose: The purpose of this study is to explore the role of AS-IV on atherosclerosis and the underlying mechanism.
PLoS One
December 2024
Department of Nephrology, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi, China.
Renal tubular epithelial cell injury is an important manifestation of chronic kidney disease (CKD). This study aims to explore the mechanism of astragaloside IV (AS-IV) in the treatment of UII-mediated renal tubular epithelial cell injury by integrating network pharmacology and experimental validation. BATMAN, SwissTarget-Prediction and ETCM data bases were used to screen the target proteins of AS-IV.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!