Phosphatidylinositol 3-kinaseβ (PI3Kβ) plays a predominant role in integrin outside-in signaling and in platelet activation by GPVI engagement. We have shown that the tyrosine kinase Pyk2 mediates PI3Kβ activation downstream of integrin αIIbβ3, and promotes the phosphorylation of the PI3K-associated adaptor protein c-Cbl. In this study, we compared the functional correlation between Pyk2 and PI3Kβ upon recruitment of the two main platelet collagen receptors, integrin α2β1 and GPVI. PI3Kβ-mediated phosphorylation of Akt was inhibited in Pyk2-deficient platelets adherent to monomeric collagen through integrin α2β1, but occurred normally upon GPVI ligation. Integrin α2β1 engagement led to Pyk2-independent association of c-Cbl with PI3K. However, c-Cbl was not phosphorylated in adherent platelets, and phosphorylation of Akt occurred normally in c-Cbl-deficient platelets, indicating that the c-Cbl is dispensable for Pyk2-mediated PI3Kβ activation. Stimulation of platelets with CRP, a selective GPVI ligand, induced c-Cbl phosphorylation in the absence of Pyk2, but failed to promote its association with PI3K. Pyk2 activation was completely abrogated in PI3KβKD, but not in PI3KγKD platelets, and was strongly inhibited by Src kinases and phospholipase C inhibitors, and by BAPTA-AM. The absence of PI3Kβ activity also hampered GPVI-induced tyrosine-phosphorylation and activation of PLCγ2, preventing intracellular Ca2+ increase and phosphorylation of pleckstrin. Moreover, GPVI-induced intracellular Ca2+ increase and pleckstrin phosphorylation were also strongly inhibited in human platelets treated with the PI3Kβ inhibitor TGX-221. These results outline important differences in the regulation of PI3Kβ by GPVI and integrin α2β1 and suggest that inhibition of Pyk2 may target PI3Kβ activation in a selective context of platelet stimulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2015.05.004DOI Listing

Publication Analysis

Top Keywords

integrin α2β1
20
pi3kβ activation
12
platelet collagen
8
collagen receptors
8
receptors integrin
8
α2β1 gpvi
8
pi3kβ
8
phosphorylation akt
8
intracellular ca2+
8
ca2+ increase
8

Similar Publications

Molecular imaging using positron emission tomography (PET) provides sensitive detection and mapping of molecular targets. While cancer-associated fibroblasts and integrins have been proposed as targets for imaging of pancreatic ductal adenocarcinoma (PDAC), herein, spatial transcriptomics and proteomics of human surgical samples are applied to select PDAC targets. We find that selected cancer cell surface markers are spatially correlated and provide specific cancer localization, whereas the spatial correlation between cancer markers and immune-related or fibroblast markers is low.

View Article and Find Full Text PDF

Zika virus (ZIKV) infection can result in a birth defect of the brain called microcephaly and other severe fetal brain defects. ZIKV enters the susceptible host cells by endocytosis, which is mediated by the interaction of the envelope (E) glycoprotein with cellular surface receptor molecules. However, the cellular factors that used by the ZIKV to gain access to host cells remains elusive.

View Article and Find Full Text PDF

Background: Gallstone formation is a common digestive ailment, with unclear mechanisms underlying its development. Dysfunction of the gallbladder smooth muscle (GSM) may play a crucial role, particularly with a high-fat diet (HFD). This study aimed to investigate the effects of an HFD on GSM and assess how it alters contractility through changes in the extracellular matrix (ECM).

View Article and Find Full Text PDF

The blood-brain barrier (BBB) presents one of the main obstacles to delivering anticancer drugs in glioblastoma. Herein, we investigated the potential of a series of cyclic ruthenium-peptide conjugates as photoactivated therapy candidates for the treatment of this aggressive tumor. The three compounds studied, , , and ([Ru(Phphen) Ac-XRGDX-NH)]Cl with Phphen = 4,7-diphenyl-1,10-phenanthroline and X, X = His or Met), include an integrin-targeted pentapeptide coordinated to a ruthenium warhead via two photoactivated ruthenium-X bonds.

View Article and Find Full Text PDF

AQP3-liposome@GelMA promotes overloaded-induced degenerated disc regeneration via IBSP/ITG αVβ3/AKT pathway.

Int J Biol Macromol

December 2024

Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China; Tissue Repairing and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China. Electronic address:

Medical and conservative treatments for intervertebral disc degeneration (IDD) primarily focus on alleviating symptoms. However, effective curative therapies that promote disc regeneration remain lacking. Recent advancements in disc repair materials offer a potential solution, but identifying effective cytokines for regeneration and developing efficient drug delivery systems are crucial for success.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!