Sirtuin 3 (Sirt3) plays critical roles in regulating mitochondrial oxidative metabolism. However, whether Sirt3 is involved in liver ischemia and reperfusion (I/R) injury remains elusive. Caffeic acid (CA) is a natural antioxidant derived from Salvia miltiorrhiza. Whether CA protects against liver I/R injury through regulating Sirt3 and the mitochondrial respiratory chain (MRC) is unclear. This study investigated the effect of CA on liver I/R injury, microcirculatory disturbance, and potential mechanisms, particularly focusing on Sirt3-dependent MRC. Liver I/R of male Sprague-Dawley rats was established by occlusion of portal area vessels for 30 min followed by 120 min of reperfusion. CA (15 mg/kg/h) was continuously infused via the femoral vein starting 30 min before ischemia. After I/R, Sirt3 expression, and MRC activity decreased, acetylation of NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9 and succinate dehydrogenase complex, subunit A, flavoprotein variant provoked, and the liver microcirculatory disturbance and injury were observed. Treatment with CA attenuated liver injury, inhibited Sirt3 down-expression, and up-regulated MRC activity. CA attenuated rat liver microcirculatory disturbance and oxidative injury through regulation of Sirt3 and the mitochondrial respiratory chain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2015.04.033 | DOI Listing |
Front Aging Neurosci
December 2024
Scientific Research Center, Guangzhou Sport University, Guangzhou, China.
Objective: Anxiety and depression-like symptoms occur in the early stages of Alzheimer's disease. Hippocampal Sirtuin 1 (SIRT1) signaling mediates anxiety- and depression-like behavior. Exercise training improves anxiety and depression-like behavior in various disease models, such as the rat chronic restraint stress model, rat model of posttraumatic stress disorder, and rat model of fetal alcohol spectrum disorders.
View Article and Find Full Text PDFInt J Med Sci
January 2025
Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.
Receptor-interacting protein 3 (Ripk3) plays a crucial part in acute lung injury (ALI) by regulating inflammation-induced endothelial damage in the lung tissue. The precise mechanisms through which Ripk3 contributes to the endothelial injury in ALI still remain uncertain. In the current research, we employed Ripk3-deficient (Ripk3) mice to examine the role of Ripk3 in ALI progression, focusing on its effects on endothelial cells (ECs), mitochondrial damage and necroptosis.
View Article and Find Full Text PDFInt J Med Sci
January 2025
Nanchang Institute of Technology, College of Medicine, China.
Myocardial injury is prone to occur during myocardial ischemia-reperfusion, which further causes adverse cardiac events. Cardiomyopeptide (CMP) has been found to protect the heart against ischemia-reperfusion injury. The present study will explore the molecular and signaling mechanisms associated with the therapeutic effects of CMP.
View Article and Find Full Text PDFNeuroscience
December 2024
College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, China; Traditional Chinese Veterinary Research Institute, Southwest University, Rongchang, Chongqing 402460, China. Electronic address:
The experiment was designed to explore the effects and mechanism of Dilong on alleviating cyclophosphamide (CTX)-induced brain injury in mice. Fifty male SPF Kunming mice aged 6-8 weeks were randomly divided into five groups: Group A served as the control group; Group B received intraperitoneal injection of CTX; Groups C, D, and E were administered Dilong at doses of 100, 200, and 400 mg/kg respectively for 14 days after intraperitoneal injection of CTX. Results showed that after modeling, the movement speed of mice significantly decreased (P < 0.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
December 2024
Departement of Respiratory Medicine, Xinhua hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
CD147 has the potential to serve as a specific target with therapeutic characteristics in several respiratory diseases. Studies have demonstrated that CD147 regulates levels of oxidative phosphorylation (OXPHOS) through the process of mitochondrial translocations. However, there is still limited insight in the distinct mechanism of CD147 in asthmatic macrophages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!